The Gurevich $bu$-homomorphism
Izvestiya. Mathematics , Tome 8 (1974) no. 6, pp. 1225-1234.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we give sufficient conditions on a spectrum in order that the $(\operatorname{mod}p)$ reduction of the Gurevich $bu$-homomorphism on its spectrum is a monomorphism.
@article{IM2_1974_8_6_a4,
     author = {N. V. Panov},
     title = {The {Gurevich} $bu$-homomorphism},
     journal = {Izvestiya. Mathematics },
     pages = {1225--1234},
     publisher = {mathdoc},
     volume = {8},
     number = {6},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a4/}
}
TY  - JOUR
AU  - N. V. Panov
TI  - The Gurevich $bu$-homomorphism
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 1225
EP  - 1234
VL  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a4/
LA  - en
ID  - IM2_1974_8_6_a4
ER  - 
%0 Journal Article
%A N. V. Panov
%T The Gurevich $bu$-homomorphism
%J Izvestiya. Mathematics 
%D 1974
%P 1225-1234
%V 8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a4/
%G en
%F IM2_1974_8_6_a4
N. V. Panov. The Gurevich $bu$-homomorphism. Izvestiya. Mathematics , Tome 8 (1974) no. 6, pp. 1225-1234. http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a4/

[1] Stong R., “Relations between characteristic numbers”, Topology, 4 (1965), 267–282 | DOI | MR

[2] Stong R., “Some remarks on symplectic cobordism”, Ann. Math., 86 (1967), 425–433 | DOI | MR | Zbl

[3] Hattori A., “Integral characteristic numbers for weakly complex manifolds”, Topology, 5 (1966), 259–280 | DOI | MR | Zbl

[4] Adams J. F., Liulevicious A., “The Hurewicz homomorphism for $MU$ and $BP$”, J. London Math. Soc., Ser. 2, 5 (1972), 539–545 | DOI | MR | Zbl

[5] Milnor J. W., “The Steenrod algebra and its dual”, Ann. of Math. (2), 67 (1958), 150–171 | DOI | MR | Zbl

[6] Cohen J. M., “The Hurewicz homomorphism on $MU$”, Invent. Math., 10 (1970), 177–186 | DOI | MR | Zbl

[7] Adams J. F., “On Chern characters and structure of unitary group”, Proc. Cambridge Philos. Soc., 57 (1961), 189–200 | DOI | MR