Algebraic number fields with large class number
Izvestiya. Mathematics , Tome 8 (1974) no. 5, pp. 967-978

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that “almost all” real quadratic fields of a given type have a large ideal class number. For example, the number of ideal classes of the fields $\mathbf Q\bigl(\sqrt{m(m+1)(m+2)(m+3)}\,\bigr)$, where $\mathbf Q$ is the field of rational numbers, grows unbounded with $m$, as $m$ ranges through all natural numbers, except for a very sparse sequence. An analogous fact is established for the fields of Ankeny–Brauer–Chowla [5].
@article{IM2_1974_8_5_a0,
     author = {V. G. Sprindzhuk},
     title = {Algebraic number fields with large class number},
     journal = {Izvestiya. Mathematics },
     pages = {967--978},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_5_a0/}
}
TY  - JOUR
AU  - V. G. Sprindzhuk
TI  - Algebraic number fields with large class number
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 967
EP  - 978
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_5_a0/
LA  - en
ID  - IM2_1974_8_5_a0
ER  - 
%0 Journal Article
%A V. G. Sprindzhuk
%T Algebraic number fields with large class number
%J Izvestiya. Mathematics 
%D 1974
%P 967-978
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_5_a0/
%G en
%F IM2_1974_8_5_a0
V. G. Sprindzhuk. Algebraic number fields with large class number. Izvestiya. Mathematics , Tome 8 (1974) no. 5, pp. 967-978. http://geodesic.mathdoc.fr/item/IM2_1974_8_5_a0/