An estimate of the code length of signals with a~finite spectrum in connection with sound-recording problems
Izvestiya. Mathematics , Tome 8 (1974) no. 4, pp. 867-894.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article an estimate is given of the entropy of the Bernstein class $B_\sigma$. This class consists, by definition, of the real-valued functions of a single real variable that are bounded in absolute value on the real line by unity and such that the supports of their Fourier transforms are contained in the interval $[-\sigma,\sigma]$. The meaning of the estimates will be discussed in connection with sound-recording problems.
@article{IM2_1974_8_4_a4,
     author = {V. I. Buslaev and A. G. Vitushkin},
     title = {An estimate of the code length of signals with a~finite spectrum in connection with sound-recording problems},
     journal = {Izvestiya. Mathematics },
     pages = {867--894},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a4/}
}
TY  - JOUR
AU  - V. I. Buslaev
AU  - A. G. Vitushkin
TI  - An estimate of the code length of signals with a~finite spectrum in connection with sound-recording problems
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 867
EP  - 894
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a4/
LA  - en
ID  - IM2_1974_8_4_a4
ER  - 
%0 Journal Article
%A V. I. Buslaev
%A A. G. Vitushkin
%T An estimate of the code length of signals with a~finite spectrum in connection with sound-recording problems
%J Izvestiya. Mathematics 
%D 1974
%P 867-894
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a4/
%G en
%F IM2_1974_8_4_a4
V. I. Buslaev; A. G. Vitushkin. An estimate of the code length of signals with a~finite spectrum in connection with sound-recording problems. Izvestiya. Mathematics , Tome 8 (1974) no. 4, pp. 867-894. http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a4/

[1] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya, $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi matem. nauk, 14:2 (1959), 3–86 | MR

[2] Levin B. Ya., Tselye funktsii, kurs lektsii, In-t mekhaniki MGU, M., 1971

[3] Bernshtein S. N., Sobr. soch., t. 2, AN SSSR, M., 1952, str. 443

[4] Bernshtein S. N., Sobr. soch., t. 1, AN SSSR, M., 1952, str. 21