An estimate of the code length of signals with a~finite spectrum in connection with sound-recording problems
Izvestiya. Mathematics , Tome 8 (1974) no. 4, pp. 867-894
Voir la notice de l'article provenant de la source Math-Net.Ru
In the article an estimate is given of the entropy of the Bernstein class $B_\sigma$. This class consists, by definition, of the real-valued functions of a single real variable that are bounded in absolute value on the real line by unity and such that the supports of their Fourier transforms are contained in the interval $[-\sigma,\sigma]$. The meaning of the estimates will be discussed in connection with sound-recording problems.
@article{IM2_1974_8_4_a4,
author = {V. I. Buslaev and A. G. Vitushkin},
title = {An estimate of the code length of signals with a~finite spectrum in connection with sound-recording problems},
journal = {Izvestiya. Mathematics },
pages = {867--894},
publisher = {mathdoc},
volume = {8},
number = {4},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a4/}
}
TY - JOUR AU - V. I. Buslaev AU - A. G. Vitushkin TI - An estimate of the code length of signals with a~finite spectrum in connection with sound-recording problems JO - Izvestiya. Mathematics PY - 1974 SP - 867 EP - 894 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a4/ LA - en ID - IM2_1974_8_4_a4 ER -
%0 Journal Article %A V. I. Buslaev %A A. G. Vitushkin %T An estimate of the code length of signals with a~finite spectrum in connection with sound-recording problems %J Izvestiya. Mathematics %D 1974 %P 867-894 %V 8 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a4/ %G en %F IM2_1974_8_4_a4
V. I. Buslaev; A. G. Vitushkin. An estimate of the code length of signals with a~finite spectrum in connection with sound-recording problems. Izvestiya. Mathematics , Tome 8 (1974) no. 4, pp. 867-894. http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a4/