Unipotent group schemes over integral rings
Izvestiya. Mathematics , Tome 8 (1974) no. 4, pp. 761-800.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study families of unipotent algebraic groups over integral rings. The main results relate to the geometry of such families. In particular, we prove that, under some hypotheses, the space of such a family is isomorphic to an affine space over the base. We give counterexamples showing that in the case of an arbitrary base ring the basic facts of the theory of unipotent algebraic groups over a field cease to be true. For a certain class of the group schemes that we consider we prove results on cohomology, extensions and deformations.
@article{IM2_1974_8_4_a1,
     author = {B. Yu. Weisfeiler and I. V. Dolgachev},
     title = {Unipotent group schemes over integral rings},
     journal = {Izvestiya. Mathematics },
     pages = {761--800},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a1/}
}
TY  - JOUR
AU  - B. Yu. Weisfeiler
AU  - I. V. Dolgachev
TI  - Unipotent group schemes over integral rings
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 761
EP  - 800
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a1/
LA  - en
ID  - IM2_1974_8_4_a1
ER  - 
%0 Journal Article
%A B. Yu. Weisfeiler
%A I. V. Dolgachev
%T Unipotent group schemes over integral rings
%J Izvestiya. Mathematics 
%D 1974
%P 761-800
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a1/
%G en
%F IM2_1974_8_4_a1
B. Yu. Weisfeiler; I. V. Dolgachev. Unipotent group schemes over integral rings. Izvestiya. Mathematics , Tome 8 (1974) no. 4, pp. 761-800. http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a1/

[1] Grothendieck A., Diedonne J., “Elements de Geometrie Algebrique”, Inst. Hautes Études Sci. Publ. Math., 1961, no. 8; 1966, no. 24, 28

[2] Schemas en groupes, Seminaire de Geometrie Algebrique 1962/64 dirigé par M. Demazure et A. Grothendieck, Lect. Notes in Math. (SGAD), 151, 152, 153, Springer, 1970

[3] Theorie des topos et cohomologie etale des schémas, Seminaire de Geometrie Algebrique 1963/64 dirigé par M. Artin et A. Grothendieck, Lect. Notes in Math. (SGAA), 269, 270, Springer, 1972 | MR

[4] Anantharaman S., “Schémas en groupes, espaces homogenes et espaces algébriques sur une base de dimension, 1”, Bull. Soc. Math. France Mémoir, 33 (1973), 5–79 | MR | Zbl

[5] Brynski M., “Forms of the rings $R[X]$ and $R[X,Y]$”, Glasgow Math. J., 13:2 (1972), 91–97 | DOI | MR | Zbl

[6] Burbaki N., Kommutativnaya algebra, perevod s frants., Mir, M., 1972 | Zbl

[7] Demazure M., Gabriel P., Groupes algébrique, North-Holland, 1970

[8] Grothendieck A., “Le groupe de Brauer. III: Exemples et compléments”, Dix Exsposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, Paris, 1968, 88–188 | MR

[9] Manin Yu. I., Lektsii po algebraicheskoi geometrii. I: Affinnye skhemy, MGU, M., 1970

[10] Miyanishi M., “On the cohomologies of commutative affine group schemes”, J. Math. Kyoto Univ., 8:1 (1968), 1–39 | MR | Zbl

[11] Mumford D., Enriques' classification of surfaces. I: Global Analysis, Princeton, N.Y., 1969

[12] Raynaud M., Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lect. Notes in Math., 119, Springer, 1970 | MR | Zbl

[13] Raynaud M., “Modéles de Neron”, Comptes Rendus Acad. Sci. Paris., 262 (1966), A345–A347 | MR

[14] Raynaud M., “Spécialisation du foncteur de Picard”, Publs. Math. de IHES, 1970, no. 38, 27–76 | MR | Zbl

[15] Russel P., “Forms of the affine line and its additive group”, Pacific J. Math., 32:2 (1970), 527–539 | MR | Zbl

[16] Cepp Zh.-P., Algebraicheskie gruppy i polya klassov, Mir, M., 1968

[17] Shatz S., “Cohomology of artinian group schemes over local fields”, Ann. Math., 79:3 (1964), 411–449 | DOI | MR | Zbl

[18] Simon A. M., “Un théorème d'affinité de schéma en groupes quotient”, Bull. Cl. Sci. Acad. Roy. Belg., 68:11 (1972), 1325–1337 | MR

[19] Bruhat F., Tits J., “Groupes algebriques simples sur un corps local”, Comptes Rendus Acad. Sci. Paris, 263 (1966), A822–A825 | MR