Estimates on the boundary for differential operators with constant coefficients in a~half-space
Izvestiya. Mathematics , Tome 8 (1974) no. 3, pp. 667-726
Voir la notice de l'article provenant de la source Math-Net.Ru
For differential operators $A(D)$, $P_j(D)$ ($j=1,\dots,N$, $D=(\partial/i\partial x_1,\dots,\partial/i\partial x_{n-1};\partial/i\partial t)$) with constant complex coefficients in the half-space $\mathbf R^n_+=\{(x;t),x\in\mathbf R^{n-1},t\geqslant0\}$ we present a precise description of the “space of traces” $A(D)u|_{t=0}$ of elements $u$ in the completion of the space $C^\infty_0(\mathbf R^n_+)$ with respect to the metric $\sum_{j=1}^N\|P_j(D)u\|^2$ ($\|\cdot\|$ is the norm in $L_2(\mathbf R^n_+)$). We consider the case of the metric $\|P(D)u\|^2+\|u\|^2$ in detail.
We establish necessary and sufficient conditions for validity of the inequality
$$
\bigl\langle A(D)u\bigr\rangle_{s_0}^2\leqslant
C\biggl(\sum_{j=1}^N\|P_j(D)u\|^2+\sum_{k=1}^r\langle B_k(D)u\rangle_{s_k}^2\biggr)
$$
for all $u(x;t)\in C^\infty_0(\mathbf R^n_+)$ ($\langle\cdot\rangle$ is the norm in $\mathscr H_s(\partial\mathbf R^n_+)$).
@article{IM2_1974_8_3_a11,
author = {I. V. Gel'man and V. G. Maz'ya},
title = {Estimates on the boundary for differential operators with constant coefficients in a~half-space},
journal = {Izvestiya. Mathematics },
pages = {667--726},
publisher = {mathdoc},
volume = {8},
number = {3},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a11/}
}
TY - JOUR AU - I. V. Gel'man AU - V. G. Maz'ya TI - Estimates on the boundary for differential operators with constant coefficients in a~half-space JO - Izvestiya. Mathematics PY - 1974 SP - 667 EP - 726 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a11/ LA - en ID - IM2_1974_8_3_a11 ER -
I. V. Gel'man; V. G. Maz'ya. Estimates on the boundary for differential operators with constant coefficients in a~half-space. Izvestiya. Mathematics , Tome 8 (1974) no. 3, pp. 667-726. http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a11/