Minimal hypersurfaces over soft obstacles
Izvestiya. Mathematics , Tome 8 (1974) no. 2, pp. 379-421

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work the following variational problem is discussed: minimize the area functional $$ F(u)=\int_G\sqrt{1+|\nabla u|^2}\,dx $$ in the class of all functions $W_0^{1,1}(G)$ for which $\int_{D\Subset G}u\,dx\geqslant V=\mathrm{const}$. For small enough $V$ the existence of an extremal is proved, and it is shown that it belongs to $C^{1,\alpha}(\overline G)$ with a Hölder index $\alpha$, $0\alpha\leqslant1$.
@article{IM2_1974_8_2_a6,
     author = {O. V. Titov},
     title = {Minimal hypersurfaces over soft obstacles},
     journal = {Izvestiya. Mathematics },
     pages = {379--421},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a6/}
}
TY  - JOUR
AU  - O. V. Titov
TI  - Minimal hypersurfaces over soft obstacles
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 379
EP  - 421
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a6/
LA  - en
ID  - IM2_1974_8_2_a6
ER  - 
%0 Journal Article
%A O. V. Titov
%T Minimal hypersurfaces over soft obstacles
%J Izvestiya. Mathematics 
%D 1974
%P 379-421
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a6/
%G en
%F IM2_1974_8_2_a6
O. V. Titov. Minimal hypersurfaces over soft obstacles. Izvestiya. Mathematics , Tome 8 (1974) no. 2, pp. 379-421. http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a6/