Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1974_8_2_a6, author = {O. V. Titov}, title = {Minimal hypersurfaces over soft obstacles}, journal = {Izvestiya. Mathematics }, pages = {379--421}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {1974}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a6/} }
O. V. Titov. Minimal hypersurfaces over soft obstacles. Izvestiya. Mathematics , Tome 8 (1974) no. 2, pp. 379-421. http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a6/
[1] Lewy H., Stampacchia G., “On the regularity of the solution of a variational inequality”, Comm. Pure Appl. Math., 22(2) (1969), 153–188 | DOI | MR | Zbl
[2] Lewy H., Stampacchia G., “On existence and smoothness of solutions of some non-coercive variational inequalities”, Arch. Rat. Mech. and Anal., 41(4) (1971), 241–253 | MR | Zbl
[3] Nitsche J. C. C., “Variational problems with inequalities as boundary conditions or how to fashion a cheap hat for Giacometti's brother”, Arch. Rat. Mech. and Anal., 35(2) (1969), 83–113 | MR | Zbl
[4] Miranda M., “Nouveaux résultats pour les hypersurfaces minimales”, Actes Congrès Intern. Math., v. 2, 1970, 853–858 | MR
[5] Giusti E., “Superfici minime cartesiane con ostacoli discontinue”, Arch. Rat. Mech. and Anal., 40(4) (1971), 231–267 | DOI | MR
[6] Giaquinta M., Pepe L., “Esistenza e regolarita per il problema dell'area minima con ostacoli in $n$ variabili”, Ann. Sc. Norm. Sup. di Pisa, 25(3) (1971), 481–507 | MR | Zbl
[7] Wente H. C., “A general existence theorem for surfaces of constant mean curvature”, Math. Z., 120(3) (1971), 277–288 | DOI | MR | Zbl
[8] de Giorgi E., “Sulla differenziabilitàe l'analiticità delle estremali degli integrali multipli regolari”, Mem. Acad. Sci. Torino, Ser. 3, 3:1 (1957), 25–43 | MR | Zbl
[9] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR
[10] Ladyzhenskaya O. A., Uralt'seva N. N., “Local estimates for gradients of solutions of non-uniformly elliptic and parabolic equations”, Comm. Pure Appl. Math., 23(4) (1970), 677–703 | DOI | MR | Zbl
[11] Temam R., “Solutions generalisés de certaines équations du type hypersurfaces minima”, Arch. Rat. Mech. and Anal., 44(2) (1971), 121–156 | MR | Zbl
[12] Morrey C. B., Multiple integrals in the calculus of variations, Springer-Verlag, 1966 | MR | Zbl
[13] Serrin J., “On the definition and properties of certain variational integrals”, Trans. Amer. Math. Soc., 101(1) (1961), 139–167 | DOI | MR | Zbl
[14] Stampacchia G., “On some regular multiple integral problems in the calculus of variations”, Comm. Pure Appl. Math., 16(4) (1963), 383–421 | DOI | MR | Zbl
[15] Bakelman I. Ya., “Giperpoverkhnosti s dannoi srednei kriviznoi i kvazilineinye ellipticheskie uravneniya s silnymi nelineinostyami”, Matem. sb., 75 (1968), 604–638 | MR
[16] Hopf E., “Elementare Bemerkungen über die Lösungen partiellen Differentialgleichungen zweiter Ordnung von elliptischen Typen”, Sitz. Ber. Preuss. Akad. Wiss., 119 (1927), 147–152
[17] Schauder J., “Über lineare elliptische Differentialgleichungen zweiter Ordnung”, Math. Z., 38(2) (1934), 257–282 | DOI | MR | Zbl
[18] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971 | MR
[19] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959 | MR
[20] Cordes H. O., “Die erste Randuertaufgabe bei Differentialgleichungen zweiter Ordnung in mehr als zwei Variabeln”, Math. Ann., 131(3) (1956), 278–318 | DOI | MR