Generalized quasianalyticity and a~uniqueness criterion for a~class of analytic functions
Izvestiya. Mathematics , Tome 8 (1974) no. 2, pp. 339-378.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work there is considered a class of analytic functions $\varphi(x)$ bounded on the angular sector $|\arg x|\pi\alpha/2$, $0\leqslant\alpha\infty$, for which $$ \|\varphi^{(n)}\|_{L^p(0,\infty(\theta))}\leqslant m_n,\quad1\leqslant p\leqslant\infty,\quad\theta\in\biggl[-\frac{\pi\alpha}2,\frac{\pi\alpha}2\biggr], $$ such that $\varphi^{(\nu_n)}(0+)=0$, where $\{\nu_n\}$ is a subsequence of the sequence $\{n\}_{n=0}^\infty$. Under a sufficiently general assumption on $\{\nu_n\}$ a criterion is obtained for the triviality of this class, from which several known results are derived as special cases. The results are formulated in terms, introduced by the author, of derivatives of a more general form.
@article{IM2_1974_8_2_a5,
     author = {G. V. Badalyan},
     title = {Generalized quasianalyticity and a~uniqueness criterion for a~class of analytic functions},
     journal = {Izvestiya. Mathematics },
     pages = {339--378},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a5/}
}
TY  - JOUR
AU  - G. V. Badalyan
TI  - Generalized quasianalyticity and a~uniqueness criterion for a~class of analytic functions
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 339
EP  - 378
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a5/
LA  - en
ID  - IM2_1974_8_2_a5
ER  - 
%0 Journal Article
%A G. V. Badalyan
%T Generalized quasianalyticity and a~uniqueness criterion for a~class of analytic functions
%J Izvestiya. Mathematics 
%D 1974
%P 339-378
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a5/
%G en
%F IM2_1974_8_2_a5
G. V. Badalyan. Generalized quasianalyticity and a~uniqueness criterion for a~class of analytic functions. Izvestiya. Mathematics , Tome 8 (1974) no. 2, pp. 339-378. http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a5/

[1] Carleman T., Les fonction quasianalytiques, Gauthier-Villars, Paris, 1926 | Zbl

[2] Ostrovski A., “Über quasi-analytische Funktionen und Bestimmtheit asymptotischer Entwicklungen”, Acta Math., 63 (1930), 181–266

[3] Mandelbroit S., Kvazianaliticheskie klassy funktsii, ONTI, M., L., 1937

[4] Mandelbroit S., Primykayuschie ryady. Regulyarizatsiya posledovatelnostei primeneniya, IL, M., 1955

[5] Mandelbroit S., Teoremy zamknutosti i teoremy kompozitsii, IL, M., 1962

[6] Malliavin P., “Sur quelques procedes d'extrapolation”, Acta Math., 93:3,4 (1955), 179–255 | DOI | MR | Zbl

[7] Salinas B. R., “Functiones con momentos nulas”, Rev. de la R. Acad. de ciencias de Madrid, XLIX (1955), 331–368

[8] Badalyan G. V., “Obobschenie ryada Teilora i nekotorye voprosy teorii analiticheskikh i kvazianaliticheskikh funktsii”, Izv. AN Arm. SSR, VI:5,6 (1953), 1–63 | MR

[9] Khirshman I. I., Uidder D. V., Preobrazovaniya tipa svertki, IL, M., 1958

[10] Fuchs W. H. J., “On a theorem of Mandelbrojt”, J. London Math. Soc., 22 (1947), 19–25 | DOI | MR | Zbl

[11] Van der Pol B., Operatsionnoe ischislenie na osnove dvustoronnego preobrazovaniya Laplasa, IL, M., 1952

[12] Ryzhik I. M., Gradshtein I. S., Tablitsy integralov, summ, ryadov i proizvedenii, GTTL, M., 1951