On~the Hopf algebra of~a~local ring
Izvestiya. Mathematics , Tome 8 (1974) no. 2, pp. 259-284

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hopf algebra $\operatorname{Tor}^A(k, k)$, where $A$ is a local ring and $k$ its residue class field, is studied by means of the Eilenberg–Moore spectral sequence converging to it and to a quotient algebra. It is shown that the Poincaré series of $A$ depends only on the homology structure of its Koszul complex as an algebra with Massey operations.
@article{IM2_1974_8_2_a0,
     author = {L. L. Avramov},
     title = {On~the {Hopf} algebra of~a~local ring},
     journal = {Izvestiya. Mathematics },
     pages = {259--284},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a0/}
}
TY  - JOUR
AU  - L. L. Avramov
TI  - On~the Hopf algebra of~a~local ring
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 259
EP  - 284
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a0/
LA  - en
ID  - IM2_1974_8_2_a0
ER  - 
%0 Journal Article
%A L. L. Avramov
%T On~the Hopf algebra of~a~local ring
%J Izvestiya. Mathematics 
%D 1974
%P 259-284
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a0/
%G en
%F IM2_1974_8_2_a0
L. L. Avramov. On~the Hopf algebra of~a~local ring. Izvestiya. Mathematics , Tome 8 (1974) no. 2, pp. 259-284. http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a0/