On~the Hopf algebra of~a~local ring
Izvestiya. Mathematics , Tome 8 (1974) no. 2, pp. 259-284.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hopf algebra $\operatorname{Tor}^A(k, k)$, where $A$ is a local ring and $k$ its residue class field, is studied by means of the Eilenberg–Moore spectral sequence converging to it and to a quotient algebra. It is shown that the Poincaré series of $A$ depends only on the homology structure of its Koszul complex as an algebra with Massey operations.
@article{IM2_1974_8_2_a0,
     author = {L. L. Avramov},
     title = {On~the {Hopf} algebra of~a~local ring},
     journal = {Izvestiya. Mathematics },
     pages = {259--284},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a0/}
}
TY  - JOUR
AU  - L. L. Avramov
TI  - On~the Hopf algebra of~a~local ring
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 259
EP  - 284
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a0/
LA  - en
ID  - IM2_1974_8_2_a0
ER  - 
%0 Journal Article
%A L. L. Avramov
%T On~the Hopf algebra of~a~local ring
%J Izvestiya. Mathematics 
%D 1974
%P 259-284
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a0/
%G en
%F IM2_1974_8_2_a0
L. L. Avramov. On~the Hopf algebra of~a~local ring. Izvestiya. Mathematics , Tome 8 (1974) no. 2, pp. 259-284. http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a0/

[1] Avramov L. L., Golod E. S., “Ob algebre gomologii kompleksa Kozyulya lokalnogo koltsa Gorenshteina”, Matem. zametki, 9 (1971), 53–58 | MR | Zbl

[2] Golod E. S., “O gomologiyakh nekotorykh lokalnykh kolets”, Dokl. AN SSSR, 144 (1962), 479–482 | MR | Zbl

[3] Zarisskii O., Samyuel P., Kommutativnaya algebra, t. II, IL, M., 1963

[4] Kartan A., “Algebra kogomologii prostranstv Eilenberga–Makleina”, gl. 6, Razdelennye stepeni, Matematika, 3:5 (1959), 41–50

[5] Maklein S., Gomologiya, Mir, M., 1966

[6] Assmus E. F. Jr., “On the homology of local rings”, Ill. J. Math., 3 (1969), 187–199 | MR

[7] Auslander M., Buchsbaum D., “Codimension and multiplicity”, Ann. Math., 68 (1958), 625–657 | DOI | MR | Zbl

[8] Gulliksen T. H., Levin G., Homology of local rings, Queen's Papers in Pure and Appl. Math., 20, Queen's University, Kingston, Ontario, 1969 | MR | Zbl

[9] Kraines D., Schochet C., “Differentials in the Eilenberg–Moore spectral sequence”, J. Pure Appl. Algebra, 2 (1972), 131–148 | DOI | MR | Zbl

[10] May J. P., “Matric Massey products”, J. of Algebra, 12 (1969), 533–968 | DOI | MR

[11] May J. P., The algebraic Eilenberg–Moore spectral sequence, Preprint, Chicago

[12] Milnor J. W., Moore J. C., “On the structure of Hopf algebras”, Ann. Math., 81 (1965), 211–264 | DOI | MR | Zbl

[13] Moore J. C., “Algèbre homologique et homologie des éslpaces classificants”, Seminaire H. Cartan (12e annee 1959/60), no. 7, 1961

[14] Shamash J., “The Poincaré series of a local ring, II”, J. Algebra, 117 (1971), 1–18 | DOI | MR

[15] Schoeller C., “$\Gamma-H$-algèbres sur un corps”, Compt. Rend. Acad. Sci., Paris, 265 (1967), A655–658 | MR

[16] Schoeller C., “Homologie des anneaux locaux noethériens”, Compt. Rend. Acad. Sci., Paris, 265 (1967), A768–771 | MR

[17] Smith L., Lectures on the Eilenberg–Moore spectral sequence, Lecture Notes in Math., 134, Springer-Verlag, Berlin, 1970 | MR

[18] Tate J., “Homology of Noetherian rings and of local rings”, Ill. J. Math., 1 (1957), 14–27 | MR | Zbl

[19] Wolffhardt K., “Die Betti-Reihe und die Abweichungen eines localen Rings”, Math. Z., 114 (1970), 66–78 | DOI | MR | Zbl