Euler classes of stably equivalent vector bundles
Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 113-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

The possible values of the Euler class of a $k$-dimensional bundle stably equivalent to a fixed $k$-dimensional real vector bundle are studied. Complete information is obtained in the case where the dimension of the bundle is more than half of the dimension of the base. In the case where $k$ is an arbitrary even number it is shown that if the original bundle possesses a vector field, then for every element of the corresponding cohomology group whose square is equal to zero there exists an element divisible by it realized as the Euler class of a bundle stably equivalent to the original.
@article{IM2_1974_8_1_a6,
     author = {B. D. Malyi},
     title = {Euler classes of stably equivalent vector bundles},
     journal = {Izvestiya. Mathematics },
     pages = {113--131},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a6/}
}
TY  - JOUR
AU  - B. D. Malyi
TI  - Euler classes of stably equivalent vector bundles
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 113
EP  - 131
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a6/
LA  - en
ID  - IM2_1974_8_1_a6
ER  - 
%0 Journal Article
%A B. D. Malyi
%T Euler classes of stably equivalent vector bundles
%J Izvestiya. Mathematics 
%D 1974
%P 113-131
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a6/
%G en
%F IM2_1974_8_1_a6
B. D. Malyi. Euler classes of stably equivalent vector bundles. Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 113-131. http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a6/

[1] Arkowitz M., Curjel C. R., “The Hurewicz homomorphism and finite homotopy invariants”, Trans. Amer. Math. Soc., 110 (1964), 538–551 | DOI | MR | Zbl

[2] Becker J., “Cohomology and classification of liftings”, Trans. Amer. Math. Soc., 133:2 (1967), 447–475 | DOI | MR

[3] Haefliger A., “Lissage des immersions”, Topology, 6 (1967), 221–239 | DOI | MR | Zbl

[4] Haefliger A., Hirsch M., “Immersions in stable range”, Ann. Math., 75:2 (1962), 231–241 | DOI | MR | Zbl

[5] Hirsch M., “Immersions of Manifolds”, Trans. Amer. Math. Soc., 93:2 (1959), 242–276 | DOI | MR | Zbl

[6] Hirsch M., “Smooth regular neighborhoods”, Ann. Math., 76 (1962), 524–530 | DOI | MR | Zbl

[7] Lashof R., Smale S., “On the immersions of manifold in Euclidean space”, Ann. Math., 68 (1958), 562–583 | DOI | MR | Zbl

[8] Malyi B. D., “Normalnye klassy Eilera gladkikh pogruzhenii i vlozhenii”, Dokl. AN SSSR, 194:1 (1970), 28–30 | MR | Zbl

[9] Phillips A., “Submersions of open manifolds”, Topology, 6 (1967), 171–206 | DOI | MR | Zbl

[10] Serre J., “Groupes d'homotopie et classes de groupes Abeliens”, Ann. Math., 58 (1953), 258–294 | DOI | MR | Zbl

[11] Stinrod N., Topologiya kosykh proizvedenii, IL, M., 1953

[12] Wu W. T., “On the immersions of $C^\infty$-3-manifolds in a Euclidean space”, Sci. Sinica, 13 (1964), 335–336 | MR | Zbl

[13] Whitney H., “On the self-intersection of smooth $n$-manifold in $2n$-space”, Ann. Math., 45:2 (1944), 220–246 | DOI | MR | Zbl