Quasihomogeneous affine algebraic varieties of the group~$SL(2)$
Izvestiya. Mathematics , Tome 7 (1973) no. 4, pp. 793-831.

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify up to $G$-isomorphism all normal affine irreducible quasihomogeneous (i.e. containing a dense orbit) varieties of the group $G=SL(2)$ which are defined over an algebraically closed field of characteristic zero.
@article{IM2_1973_7_4_a3,
     author = {V. L. Popov},
     title = {Quasihomogeneous affine algebraic varieties of the group~$SL(2)$},
     journal = {Izvestiya. Mathematics },
     pages = {793--831},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a3/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - Quasihomogeneous affine algebraic varieties of the group~$SL(2)$
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 793
EP  - 831
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a3/
LA  - en
ID  - IM2_1973_7_4_a3
ER  - 
%0 Journal Article
%A V. L. Popov
%T Quasihomogeneous affine algebraic varieties of the group~$SL(2)$
%J Izvestiya. Mathematics 
%D 1973
%P 793-831
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a3/
%G en
%F IM2_1973_7_4_a3
V. L. Popov. Quasihomogeneous affine algebraic varieties of the group~$SL(2)$. Izvestiya. Mathematics , Tome 7 (1973) no. 4, pp. 793-831. http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a3/

[1] Vinberg E. B., Popov V. L., “Ob odnom klasse kvaziodnorodnykh affinnykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 36 (1972), 749–763 | MR

[2] Séminaire C. Chevalley, 1956–1958. Classification des groupes de Lie algébriques, Secrétariat Mathématique, Paris, 1958, 2 vols | MR

[3] Luna D., Slices étales, preprint, Institut de Mathematiques Pures Université de Grenoble, 1972

[4] Elashvili A. G., “Kanonicheskii vid i statsionarnye podalgebry tochek obschego polozheniya dlya prostykh lineinykh grupp Li”, Funkts. analiz i ego prilozh., 6:1 (1972), 51–62 | MR | Zbl

[5] Elashvili A. G., “Kanonicheskii vid i statsionarnye podalgebry tochek obschego polozheniya dlya poluprostykh lineinykh grupp Li”, Funkts. analiz i ego prilozh., 1972, no. 2, 65–78 | Zbl

[6] Gizatullin M. X., “Affinnye poverkhnosti, kvaziodnorodnye otnositelno algebraicheskoi gruppy”, Izv. AN SSSR. Ser. matem., 35 (1971), 738–753 | MR

[7] Cicurel R., “Stir les orbites affines des $G$-variétés aolmettant une orbite ouverte”, Compt. Rend. Acad. Sci. Paris, ser. A, 274 (1972), 1316–1318 | MR | Zbl

[8] Rosenlicht M., “A note on orbit spaces”, Anais. Acad. Brasil. Cienc., 35:4 (1963), 487–489 | MR | Zbl

[9] Mumford D., Geometric invariant theory, Springer-Verlag, Berlin, Heidelberg, New York, 1965 | MR | Zbl

[10] Kambayashi T., “Projective representation of algebraic linear group of transformations”, Amer. J. Math., 88:1 (1966), 199–205 | DOI | MR | Zbl

[11] Borel A.,Kharish-Chandra, “Arifmeticheskie podgruppy algebraicheskikh gruppu”, Matematika, 8:2 (1964), 19–71 | MR

[12] Seshadri C. S., “Some results on the quotient space by an algebraic group of automorphisms”, Math. Ann., 149:4 (1963), 280–301 | DOI | MR

[13] Nagata M., “Invariants under semi-requctive action”, J. Math. Kyoto Univ., 5:2 (1966), 171–176 | MR | Zbl

[14] Hilbert D., “Über die vollen Invariantsysteme”, Math. Ann., 42 (1893), 313–373 | DOI | MR

[15] Birkes D., “Orbits of linear algebraic groups”, Ann. Math., 93:3 (1971), 459–475 | DOI | MR

[16] Popov V. L., “O stabilnosti deistviya algebraicheskoi gruppy na algebraicheskom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 36 (1972), 371–385 | Zbl

[17] Zariski O., “Interprétation algébrico-geométriques du quatorzième problème de Hilbert”, Bull. Sci. Math., 78 (1954), 155–168 | MR | Zbl

[18] Veil G., Simmetriya, Nauka, M., 1968 | MR

[19] Borel A., Lineinye algebraicheskie gruppy, Mir, M., 1972 | MR | Zbl

[20] Dzhekobson N., Algebry Li, Mir, M., 1964 | MR

[21] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl