Primary orders with a~finite numbers of indecomposable representations
Izvestiya. Mathematics , Tome 7 (1973) no. 4, pp. 711-732

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Lambda$ be a semisimple $Z$-ring and $C$ its center. Assume that for any prime ideal $\mathfrak p\subset C$ the ring $\Lambda_{\mathfrak p}$ is primary. Let $\overline\Lambda$ be the intersection of the maximal over-rings of $\Lambda$, $I=\overline\Lambda/\Lambda$ and $I'=\operatorname{rad}I$. We prove that $\Lambda$ has a finite number of indecomposable integral representations if and only if $\overline\Lambda$ is a hereditary ring, $I$ has two generators as a $\Lambda$-module, and $I'$ is cyclic.
@article{IM2_1973_7_4_a0,
     author = {Yu. A. Drozd and V. V. Kirichenko},
     title = {Primary orders with a~finite numbers of indecomposable representations},
     journal = {Izvestiya. Mathematics },
     pages = {711--732},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a0/}
}
TY  - JOUR
AU  - Yu. A. Drozd
AU  - V. V. Kirichenko
TI  - Primary orders with a~finite numbers of indecomposable representations
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 711
EP  - 732
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a0/
LA  - en
ID  - IM2_1973_7_4_a0
ER  - 
%0 Journal Article
%A Yu. A. Drozd
%A V. V. Kirichenko
%T Primary orders with a~finite numbers of indecomposable representations
%J Izvestiya. Mathematics 
%D 1973
%P 711-732
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a0/
%G en
%F IM2_1973_7_4_a0
Yu. A. Drozd; V. V. Kirichenko. Primary orders with a~finite numbers of indecomposable representations. Izvestiya. Mathematics , Tome 7 (1973) no. 4, pp. 711-732. http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a0/