The asymptotic $L_p$-norm of differentiated Fourier sums of functions of bounded variation
Izvestiya. Mathematics , Tome 7 (1973) no. 2, pp. 401-423.

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic expression as $n\to\infty$ is found for the norms $\|S_n^{(r)}(x,f)\|_{L_q}$ ($1\le p$, $r=1,2,\dots$), where $S_n(x,f)$ is a Fourier sum of the $2\pi$-periodic function $f(x)$ having bounded $p$-variation. Various criteria for the continuity of a function of bounded $p$-variation are obtained as corollaries.
@article{IM2_1973_7_2_a9,
     author = {B. I. Golubov},
     title = {The asymptotic $L_p$-norm of differentiated {Fourier} sums of functions of bounded variation},
     journal = {Izvestiya. Mathematics },
     pages = {401--423},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a9/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - The asymptotic $L_p$-norm of differentiated Fourier sums of functions of bounded variation
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 401
EP  - 423
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a9/
LA  - en
ID  - IM2_1973_7_2_a9
ER  - 
%0 Journal Article
%A B. I. Golubov
%T The asymptotic $L_p$-norm of differentiated Fourier sums of functions of bounded variation
%J Izvestiya. Mathematics 
%D 1973
%P 401-423
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a9/
%G en
%F IM2_1973_7_2_a9
B. I. Golubov. The asymptotic $L_p$-norm of differentiated Fourier sums of functions of bounded variation. Izvestiya. Mathematics , Tome 7 (1973) no. 2, pp. 401-423. http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a9/

[1] Wiener N., “The quadratic variation of a function and its Fourier coefficients”, Massachusetts J. Math., 3 (1924), 72–94 | Zbl

[2] Zigmund A., Trigonometricheskie ryady, t. I, M., 1965

[3] Lozinskii S. M., “Ob odnoi teoreme N. Wiener'a”, Dokl. AN SSSR, 49:8 (1945), 562–565

[4] Lozinskii S. M., “Ob odnoi teoreme N. Wiener'a, II”, Dokl. AN SSSR, 53:8 (1946), 691–694

[5] Nikolskii S. M., “Ryady Fure funktsii, imeyuschikh proizvodnuyu ogranichennoi variatsii”, Izv. AN SSSR. Ser. matem., 13 (1949), 513–532

[6] Golubov B. I., “O nepreryvnykh funktsiyakh ogranichennoi $p$-variatsii”, Matem. zametki, 1:3 (1967), 305–312 | MR | Zbl

[7] Golubov B. I., “O $p$-variatsii funktsii”, Matem. zametki, 5:2 (1969), 195–204 | MR | Zbl

[8] Golubov B. I., “O funktsiyakh ogranichennoi $p$-variatsii”, Izv. AN SSSR. Ser. matem., 32 (1968), 837–858 | MR | Zbl

[9] Golubov B. I., “Integral Fure i nepreryvnost funktsii ogranichennoi $p$-variatsii”, Izv. vyssh. uchebn. zaved. (matematika), 1968, no. 11(78), 83–92 | MR | Zbl

[10] Young L. C., “An inequality of the Hölder type, connected with Stiltjes integration”, Acta Math., 67 (1936), 251–282 | DOI | MR | Zbl

[11] Timan M. F., “K otsenke odnogo integrala”, Ukr. matem. zh., 9:4 (1957), 452–454 | MR | Zbl

[12] Stechkin S. B., “K probleme mnozhitelei dlya trigonometricheskikh polinomov”, Dokl. AN SSSR, 75:2 (1950), 165–168 | Zbl

[13] Telyakovskii S. A., “O normakh trigonometricheskikh polinomov i priblizhenii differentsiruemykh funktsii lineinymi srednimi ikh ryadov Fure, II”, Izv. AN SSSR. Ser. matem., 27 (1963), 253–272 | MR | Zbl

[14] Stechkin S. B., “Obobschenie nekotorykh neravenstv S. N. Bernshteina”, Dokl. AN SSSR, 60:9 (1948), 1511–1514 | Zbl

[15] Nikolskii S. M., “Obobschenie odnogo neravenstva S. N. Bernshteina”, Dokl. AN SSSR, 60:9 (1948), 1507–1510 | MR

[16] Terekhin A. P., “Priblizhennye funktsii ogranichennoi $p$-variatsii”, Izv. vyssh. uchebn. zaved. (matematika), 1965, no. 2(45), 171–187 | MR | Zbl

[17] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[18] Love E. R., “A generalization of absolute continuity”, J. London Math. Soc., 26:1 (1951), 1–13 | DOI | MR | Zbl

[19] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[20] Zygmund A., “A remark on conjugate series”, Proc. London. Math. Soc., 34 (1932), 392–400 | DOI | MR | Zbl

[21] Timan A. F., “O lineinykh protsessakh priblizheniya algebraicheskimi mnogochlenami, funktsiyakh Lebega i nekotorykh prilozheniyakh k ryadam Fure”, Dokl. AN SSSR, 101:2 (1955), 221–224 | MR | Zbl

[22] Hardy G. H., “On double Fourier series and especially those wich represent the double zeta-function with reale and incommensurable parameters”, Quart. J. Math., 37 (1906), 53–79

[23] Golubov B. I., “Ob analogakh teorem Vinera i Lozinskogo dlya funktsii neskolkikh peremennykh”, Tr. Tbilissk. matem. in-ta, 38, 1970, 31–43 | MR | Zbl

[24] Ulyanov P. L., “Ob absolyutnoi i ravnomernoi skhodimosti ryadov Fure”, Matem. sb., 72:2 (1967), 193–225

[25] Fejer L., “Über die Bestimmung des Sprunges einer Funktion aus ihre Fourierreihe”, J. für Math., 142 (1913), 165–188 | Zbl

[26] Sidon S., “Über die Fourierkoeffizienten einer stetigen Funktion von bescharänkter Schwankung”, Acta Sci. Math., 2 (1924), 43–46 | Zbl

[27] Matveev V. A., “O teoremakh Vinera i Lozinskogo”, Issledovaniya po sovremennym problemam konstruktivnoi teorii funktsii, Baku, 1965

[28] Czillag P., “Über die Fourierkonstanten einer Funktion von beschränkter Schwankung”, Math. és Phys. Lapok, 27 (1918), 301–308

[29] Lebeg A., Integrirovanie i otyskanie primitivnykh funktsii, GTTI, M., L., 1934

[30] Golubov B. I., “Opredelenie skachka funktsii ogranichennoi $p$-variatsii po ee ryadu Fure”, Matem. zametki, 12:1 (1972), 19–28 | MR | Zbl

[31] Golubov B. I., “Asimptotika $L_p$-norm prodifferentsirovannykh summ Fure funktsii ogranichennoi variatsii”, Uspekhi matem. nauk, 27:6 (1972), 235–236 | MR | Zbl