Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1973_7_2_a0, author = {A. D. Ustyuzhaninov}, title = {Finite 2-groups in which the set of self-centralizing abelian normal subgroups with at least three generators is empty ($SCN_3(2)=\varnothing$)}, journal = {Izvestiya. Mathematics }, pages = {247--280}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {1973}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a0/} }
TY - JOUR AU - A. D. Ustyuzhaninov TI - Finite 2-groups in which the set of self-centralizing abelian normal subgroups with at least three generators is empty ($SCN_3(2)=\varnothing$) JO - Izvestiya. Mathematics PY - 1973 SP - 247 EP - 280 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a0/ LA - en ID - IM2_1973_7_2_a0 ER -
%0 Journal Article %A A. D. Ustyuzhaninov %T Finite 2-groups in which the set of self-centralizing abelian normal subgroups with at least three generators is empty ($SCN_3(2)=\varnothing$) %J Izvestiya. Mathematics %D 1973 %P 247-280 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a0/ %G en %F IM2_1973_7_2_a0
A. D. Ustyuzhaninov. Finite 2-groups in which the set of self-centralizing abelian normal subgroups with at least three generators is empty ($SCN_3(2)=\varnothing$). Izvestiya. Mathematics , Tome 7 (1973) no. 2, pp. 247-280. http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a0/
[1] Blackburn N., “Generalization of certain elementary theorems on $p$-groups”, Proc. London Math. Soc., XI:41 (1961), 1–22 | DOI | MR
[2] Feit W. and Thompson J. G., “Solvability of groups of odd order”, Pacif. J. Math., 13:3 (1963), 775–1029 | MR | Zbl
[3] Thompson J. G., “Nonsolvable finite groups all of whose local subgroups are solvable”, Bull. Amer. Math. Soc., 74:3 (1968), 383–428 | DOI | MR
[4] Alperin J. L., “Centralizers of Abelian Normal Subgroups of $p$-groups”, Z. Algebra, 1 (1964), 110–113 | DOI | MR | Zbl
[5] Ustyuzhaninov A. D., “Konechnye 2-gruppy s tremya involyutsiyami”, Sib. matem. zh., XIII:1 (1972), 182–197
[6] Mac. Williams A. R., “On 2-groups with no normal abelian subgroups of rank 3, and their occurence as Sylow 2-subgroups of finite simple groups”, Trans. Amer. Math. Soc., 150:2 (1970), 345–408 | DOI | MR | Zbl
[7] Konvisser M. W., “A class of 2-groups”, Notic Amer. Math. Soc., 18:1 (1971), 128, Preliminary report
[8] Ustyuzhaninov A. D., “O konechnykh $p$-gruppakh, kommutant kazhdoi sobstvennoi podgruppy kotorykh metatsiklicheskii”, Sib. matem. zh., 3 (1971), 834–844
[9] Bechtel H., “Frattini subgroups an $\Phi$-central groups”, Pacif. J. Math., 18:1 (1966), 15–23 | MR | Zbl
[10] Ustyuzhaninov A. D., “Konechnye gruppy s invariantnymi netsiklicheskimi podgruppami”, Matem. zapiski, 6:1 (1967), 107–123 | MR | Zbl
[11] Kholl M., Teoriya grupp, IL, M., 1962
[12] Suzuki M., “On finite groups containing on element of order four which commutes only with its power”, Illinois J. Math., 3:2 (1955), 255–271 | MR
[13] Busarkin V. M., Starostin A. I., “Konechnye gruppy, vse sobstvennye podgruppy kotorykh obladayut nilpotentnym rasschepleniem”, Izv. AN SSSR. Ser. matem., 29 (1965), 97–108 | MR | Zbl
[14] Sheriev V. A., “Konechnye 2-gruppy s dopolnyaemymi neinvariantnymi podgruppami”, Sib. matem. zh., 7:1 (1967), 266–315
[15] Redei L., “Das schiefe Produkt in der Gruppen theorie mit Anwendungen auf die endlichen nicht kommutativen echten Untergruppen und die Ordnung szahlen, zu denen nur kommutativen Gruppen gehören”, Comm. Math. Helv., 20 (1947), 252–264 | DOI | MR
[16] Schur J., “Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen”, J. für Math., 132 (1907), 85–137 | Zbl