Finite 2-groups in which the set of self-centralizing abelian normal subgroups with at least three generators is empty ($SCN_3(2)=\varnothing$)
Izvestiya. Mathematics , Tome 7 (1973) no. 2, pp. 247-280

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study finite 2-groups in which each abelian normal subgroup is metacyclic, i.e. $SCN_3(2)=\varnothing$. The main result: a finite 2-group with $SCN_3(2)=\varnothing$ is an extension of a metacyclic group by a group isomorphic to a subgroup of the dihedral group of order 8.
@article{IM2_1973_7_2_a0,
     author = {A. D. Ustyuzhaninov},
     title = {Finite 2-groups in which the set of self-centralizing abelian normal subgroups with at least three generators is empty ($SCN_3(2)=\varnothing$)},
     journal = {Izvestiya. Mathematics },
     pages = {247--280},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a0/}
}
TY  - JOUR
AU  - A. D. Ustyuzhaninov
TI  - Finite 2-groups in which the set of self-centralizing abelian normal subgroups with at least three generators is empty ($SCN_3(2)=\varnothing$)
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 247
EP  - 280
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a0/
LA  - en
ID  - IM2_1973_7_2_a0
ER  - 
%0 Journal Article
%A A. D. Ustyuzhaninov
%T Finite 2-groups in which the set of self-centralizing abelian normal subgroups with at least three generators is empty ($SCN_3(2)=\varnothing$)
%J Izvestiya. Mathematics 
%D 1973
%P 247-280
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a0/
%G en
%F IM2_1973_7_2_a0
A. D. Ustyuzhaninov. Finite 2-groups in which the set of self-centralizing abelian normal subgroups with at least three generators is empty ($SCN_3(2)=\varnothing$). Izvestiya. Mathematics , Tome 7 (1973) no. 2, pp. 247-280. http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a0/