$\zeta$-functions of some one-dimensional rings
Izvestiya. Mathematics, Tome 7 (1973) no. 1, pp. 1-17
Cet article a éte moissonné depuis la source Math-Net.Ru
The notion of the zeta-function is generalized to rings which are orders in classical Dedekind rings; the structure of these functions is explained. Classes of rings are given for which the classical assertions (the Riemann hypothesis, functional equation) are applicable.
@article{IM2_1973_7_1_a0,
author = {V. M. Galkin},
title = {$\zeta$-functions of some one-dimensional rings},
journal = {Izvestiya. Mathematics},
pages = {1--17},
year = {1973},
volume = {7},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_1_a0/}
}
V. M. Galkin. $\zeta$-functions of some one-dimensional rings. Izvestiya. Mathematics, Tome 7 (1973) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/IM2_1973_7_1_a0/
[1] Jenner W. E., “On zeta functions of number fields”, Duke Math. J., 36:4 (1969), 669–671 | DOI | MR | Zbl
[2] Zarisskii O., Samyuel P., Kommutativnaya algebra, t. 1, IL, M., 1963
[3] Zarisskii O., Samyuel P., Kommutativnaya algebra, t. 2, IL, M., 1963
[4] Polia G., Sege G., Zadachi i teoremy iz analiza, ch. I, GITTL, M., 1956
[5] Bass H., “On the ubiquity of Gorenstein rings”, Math. Z., 82 (1963), 8–28 | DOI | MR | Zbl