$\zeta$-functions of some one-dimensional rings
Izvestiya. Mathematics , Tome 7 (1973) no. 1, pp. 1-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of the zeta-function is generalized to rings which are orders in classical Dedekind rings; the structure of these functions is explained. Classes of rings are given for which the classical assertions (the Riemann hypothesis, functional equation) are applicable.
@article{IM2_1973_7_1_a0,
     author = {V. M. Galkin},
     title = {$\zeta$-functions of some one-dimensional rings},
     journal = {Izvestiya. Mathematics },
     pages = {1--17},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_1_a0/}
}
TY  - JOUR
AU  - V. M. Galkin
TI  - $\zeta$-functions of some one-dimensional rings
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 1
EP  - 17
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_1_a0/
LA  - en
ID  - IM2_1973_7_1_a0
ER  - 
%0 Journal Article
%A V. M. Galkin
%T $\zeta$-functions of some one-dimensional rings
%J Izvestiya. Mathematics 
%D 1973
%P 1-17
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_1_a0/
%G en
%F IM2_1973_7_1_a0
V. M. Galkin. $\zeta$-functions of some one-dimensional rings. Izvestiya. Mathematics , Tome 7 (1973) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/IM2_1973_7_1_a0/

[1] Jenner W. E., “On zeta functions of number fields”, Duke Math. J., 36:4 (1969), 669–671 | DOI | MR | Zbl

[2] Zarisskii O., Samyuel P., Kommutativnaya algebra, t. 1, IL, M., 1963

[3] Zarisskii O., Samyuel P., Kommutativnaya algebra, t. 2, IL, M., 1963

[4] Polia G., Sege G., Zadachi i teoremy iz analiza, ch. I, GITTL, M., 1956

[5] Bass H., “On the ubiquity of Gorenstein rings”, Math. Z., 82 (1963), 8–28 | DOI | MR | Zbl