On the question of nonrigidity in the nonlinear theory of gently sloping shells
Izvestiya. Mathematics , Tome 6 (1972) no. 4, pp. 883-903.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown here that sufficiently thin elastic shells of arbitrary convexity and with a mobile hinged support are nonrigid. That is, for such shells, in the absence of external loading, it is proved by an asymptotic method that the boundary-value problem for the corresponding system of nonlinear partial differential equations in the theory of shells has at least one solution besides the trivial one. The former solution corresponds to an equilibrium shape close to the buckled shape obtained from the original shell surface by reflection in the plane containing the supporting contour.
@article{IM2_1972_6_4_a9,
     author = {L. S. Srubshchik},
     title = {On the question of nonrigidity in the nonlinear theory of gently sloping shells},
     journal = {Izvestiya. Mathematics },
     pages = {883--903},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a9/}
}
TY  - JOUR
AU  - L. S. Srubshchik
TI  - On the question of nonrigidity in the nonlinear theory of gently sloping shells
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 883
EP  - 903
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a9/
LA  - en
ID  - IM2_1972_6_4_a9
ER  - 
%0 Journal Article
%A L. S. Srubshchik
%T On the question of nonrigidity in the nonlinear theory of gently sloping shells
%J Izvestiya. Mathematics 
%D 1972
%P 883-903
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a9/
%G en
%F IM2_1972_6_4_a9
L. S. Srubshchik. On the question of nonrigidity in the nonlinear theory of gently sloping shells. Izvestiya. Mathematics , Tome 6 (1972) no. 4, pp. 883-903. http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a9/

[1] Vorovich I. I., “O nekotorykh pryamykh metodakh v nelineinoi teorii pologikh obolochek”, Prikl. matem. i mekhanika, XX:4 (1956), 449–474

[2] Vorovich I. I., “Edinstvennost resheniya kraevykh zadach nelineinoi teorii obolochek i problema zhestkosti obolochek”, Tr. In-ta prikl. matem., t. II, TGU, 1969, 49–55

[3] Pogorelov A. V., Geometricheskie metody v nelineinoi teorii uprugikh obolochek, Nauka, M., 1964 | MR

[4] Marguerre K., “Zur Theorie der gekrümmten Platte grober Formänderung”, Proc. V Internat. Congress Appl. Mech., Cambridge, 1938, 93–100

[5] Vlasov V. Z., Obschaya teoriya obolochek i ee prilozhenie v tekhnike, Gostekhizdat, M., 1949

[6] Vorovich I. I., Srubschik L. S., “Asimptoticheskii analiz obschikh uravnenii nelineinoi teorii pologikh obolochek”, Tr. VII Vsesoyuzn. konferentsii po teorii obolochek i plastinok, Nauka, M., 1970, 156–159

[7] Srubschik L. S., Yudovich V. I., “Asimptoticheskoe integrirovanie sistemy uravnenii bolshogo progiba simmetrichno zagruzhennykh obolochek vrascheniya”, Prikl. matem. i mekhanika, 26:5 (1962), 313–322

[8] Srubschik L. S., Yudovich V. I., “O primenenii metoda Nyutona v zadachakh asimptoticheskogo integrirovaniya nelineinykh uravnenii”, Tr. VI Vsesoyuzn. konferentsii po primeneniyu metodov funktsionalnogo analiza k resheniyu nelineinykh zadach, Nauka, M., 1966, 103–104

[9] Feodosev V. I., “Ob ustoichivosti sfericheskoi obolochki, nakhodyascheisya pod deistviem vneshnego ravnomerno raspredelennogo davleniya”, Prikl. matem. i mekhan., 18:1 (1954), 35–42 | Zbl

[10] Vorovich I. I., Zipalova V. F., “K resheniyu nelineinykh kraevykh zadach teorii uprugosti metodom perekhoda k zadache Koshi”, Prikl. matem. i mekhan., 29:5 (1965), 834–901 | MR

[11] Valnshvili N. V., Stegnii V. N., “O formakh ravnovesiya pologikh sfericheskikh obolochek”, Mekhanika tverdogo tela, 2:6 (1968), 131–134

[12] Shilkrut D. I., Shevandronov I. V., Morar V. P., Maksimov Yu. A., Reshenie zadach nelineinoi teorii obolochek na analogovykh vychislitelnykh mashinakh, AN Moldavskoi SSR, Kishinev, 1969

[13] Srubschik L. S., “Nezhestkost sfericheskoi obolochki”, Prikl. matem. i mekhan., 31:4 (1967), 723–729 | Zbl

[14] Srubschik L. S., “Nezhestkost sfericheskogo kupola”, Prikl. matem. i mekhan., 32:3 (1968), 435–444 | Zbl

[15] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5 (1967), 3–122 | MR

[16] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[17] Feodos'ev V. I., Uprugie elementy tochnogo priborostroeniya, Oborongiz, M., 1949

[18] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, LGU, 1950

[19] Guseva O. V., “O kraevykh zadachakh dlya silno ellipticheskikh sistem”, Dokl. AN SSSR, 102:6 (1955), 1069–1072 | MR | Zbl

[20] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Gostekhizdat, M., 1955

[21] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Fizmatgiz, M., 1961

[22] Ilin V. P., “Nekotorye neravenstva v funktsionalnykh prostranstvakh i ikh primenenie k issledovaniyu skhodimosti variatsionnykh metodov”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 53, 1959, 64–127 | MR