On the absolute continuity of measures corresponding to processes of diffusion type relative to a~Wiener measure
Izvestiya. Mathematics , Tome 6 (1972) no. 4, pp. 839-882.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work there are given necessary and sufficient conditions for the absolute continuity and equivalence ($\mu_\xi\ll\mu_\omega$, $\mu_\omega\ll\mu_\xi$, $\mu_\xi\sim\mu_\omega$) of a Wiener measure $\mu_\omega$ and a measure $\mu_\xi$ corresponding to a process $\xi$ of diffusion type with differential $d\xi_t=a_t(\xi)\,dt+d\omega_t$. The densities (the Radon–Nikodým derivatives) of one measure with respect to the other are found. Questions of the absolute continuity and equivalence of measures $\mu_\xi$ and $\mu_\omega$ are investigated for the case when $\xi$ is an Ito process. Conditions under which an Ito process is of diffusion type are derived. It is proved that (up to equivalence) every process $\xi$ for which $\mu_\xi\sim\mu_\omega$ is a process of diffusion type.
@article{IM2_1972_6_4_a8,
     author = {R. Sh. Liptser and A. N. Shiryaev},
     title = {On the absolute continuity of measures corresponding to processes of diffusion type relative to {a~Wiener} measure},
     journal = {Izvestiya. Mathematics },
     pages = {839--882},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a8/}
}
TY  - JOUR
AU  - R. Sh. Liptser
AU  - A. N. Shiryaev
TI  - On the absolute continuity of measures corresponding to processes of diffusion type relative to a~Wiener measure
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 839
EP  - 882
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a8/
LA  - en
ID  - IM2_1972_6_4_a8
ER  - 
%0 Journal Article
%A R. Sh. Liptser
%A A. N. Shiryaev
%T On the absolute continuity of measures corresponding to processes of diffusion type relative to a~Wiener measure
%J Izvestiya. Mathematics 
%D 1972
%P 839-882
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a8/
%G en
%F IM2_1972_6_4_a8
R. Sh. Liptser; A. N. Shiryaev. On the absolute continuity of measures corresponding to processes of diffusion type relative to a~Wiener measure. Izvestiya. Mathematics , Tome 6 (1972) no. 4, pp. 839-882. http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a8/

[1] Girsanov I. V., “O preobrazovanii odnogo klassa sluchainykh protsessov s pomoschyu absolyutno nepreryvnoi zameny mery”, Teoriya veroyatn. i ee primen., V:3 (1960), 314–330 | MR

[2] Ershov M. P., Funktsionaly ot sluchainykh protsessov, opredelyaemye stokhasticheskimi integralami, Kandidatskaya dissertatsiya, Matem. in-t im. V. A. Steklova AN SSSR, 1970

[3] Kadota T. T., “Nonsingular Detection and likelihood ratio for random signal in white gaussian noise”, IEEE Trans. Inform. Theory, IT-16 (1970), 291–298 | DOI | MR

[4] Hitsuda M., “Representation of a Gaussian processe equivalent to Wiener process”, Osaka J. Math., 5 (1968), 299–312 | MR | Zbl

[5] Shiryaev A. N., “Stokhasticheskie uravneniya nelineinoi filtratsii skachkoobraznykh markovskikh protsessov”, Problemy peredachi informatsii, II:3 (1966), 3–22

[6] Kailath T., “A general likelihood-ratio formula for random signals”, IEEE Trans. Inform. Theory, IT-15 (1969), 350–361 | DOI | MR

[7] Prokhorov Yu. V., “Skhodimost sluchainykh protsessov i predelnye teoremy veroyatnostei”, Teoriya veroyatn. i ee primen., 1:2 (1956), 177–238 | MR | Zbl

[8] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya, Naukova Dumka, Kiev, 1968 | MR | Zbl

[9] Ibragimov I. A., Rozanov Yu. A., Gaussovskie sluchainye protsessy, Nauka, M., 1970 | MR

[10] Kadota T., Shepp L. A., “Conditions for absolute continuity between a certain Pair of Probability Measures”, Z. Wahrscheinlichkeitstheorie vew. Geb., 16:3 (1970), 250–260 | DOI | MR | Zbl

[11] Clark J. M. C., “The representation of functionals of Brownian motion by stochastic integrals”, AMS, 41:4 (1970), 1282–1296 | MR

[12] Dub Dzh. L., Veroyatnostnye protsessy, IL, M., 1956

[13] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967 | MR | Zbl

[14] Meyer P. A., Probabilites et potentiel, Hermann, Paris, 1966 | MR | Zbl

[15] Liptser R. Sh., Shiryaev A. N., “O plotnosti veroyatnostnykh mer protsessov diffuzionnogo tipa”, Izv. AN SSSR. Ser. matem., 33 (1969), 1120–1131 | Zbl

[16] Kailath T., “Likelihood ratio for gaussian processes”, IEEE Trans. Inform. Theory, IT-16 (1970), 276–288 | DOI | MR

[17] Loev M., Teoriya veroyatnostei, IL, M., 1962

[18] Shepp L. A., “Radon–Nikodym derivatives of Gaussian measures”, AMS, 39 (1966), 321–354 | MR