On interpolation theory in the complex domain
Izvestiya. Mathematics , Tome 6 (1972) no. 4, pp. 782-787.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that for the nodes $z_k^{(n)}=e^{i\theta_k^{(n)}}$, where $\theta_k^{(n)}=\frac{(2k+1)\pi}n$, $k=1,\dots,n$; $n=1,2,\dots$, the following statements hold: 1) The Hermite–Fejér interpolation process for an arbitrary polynomial converges in $|z|\leqslant1$ with rapidity $O\bigl(\frac1n\bigr)$. 2) The process $R_n(f,z)=\sum_{k=1}^nf\bigl(z_k^{(n)}\bigl)\bigl[l_k^{(n)}(z)\bigr]^2$, where $\bigl\{l_k^{(n)}(z)\bigr\}$ are Lagrange fundamental polynomials with nodes $\bigl\{z_k^{(n)}\bigr\}$, diverges at all points $z\ne0$ of $|z|\leqslant1$ for every function $f(z)=z^s$, $s=0,1,2,\dots$ .
@article{IM2_1972_6_4_a5,
     author = {D. L. Berman},
     title = {On interpolation theory in the complex domain},
     journal = {Izvestiya. Mathematics },
     pages = {782--787},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a5/}
}
TY  - JOUR
AU  - D. L. Berman
TI  - On interpolation theory in the complex domain
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 782
EP  - 787
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a5/
LA  - en
ID  - IM2_1972_6_4_a5
ER  - 
%0 Journal Article
%A D. L. Berman
%T On interpolation theory in the complex domain
%J Izvestiya. Mathematics 
%D 1972
%P 782-787
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a5/
%G en
%F IM2_1972_6_4_a5
D. L. Berman. On interpolation theory in the complex domain. Izvestiya. Mathematics , Tome 6 (1972) no. 4, pp. 782-787. http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a5/

[1] Bernshtein S. N., Neskolko zamechanii ob interpolirovanii. Sobr. soch., t. I, AN SSSR, M., 1952

[2] Faber G., “Über die interpolatorische Darstellung stetiger Funktionen”, Jahresber. DMV, 23 (1914), 192–210 | Zbl

[3] Grünwald G., “Über Divergenzerscheinungen”, Ann. Math., 37 (1936), 908–918 | DOI | MR | Zbl

[4] Marcinkiewicz J., “Sur la divergence des polynômes d'interpolation”, Acta Litt. as Sc. Szeged, 8 (1937), 131–135 | Zbl

[5] Natanson I. P., Konstruktivnaya teoriya funktsii, GITTL, M., L., 1949

[6] Fejér L., “Lagrangesche Interpolation und die zugehörigen konjngierten Punkte”, Math. Ann., 106 (1932), 1–55 | DOI | MR | Zbl

[7] Grünwald G., “On the theory of interpolation”, Acta Mathem., 75 (1943), 219–245 | DOI | MR | Zbl

[8] Fejér L., “Bestimmung derjenigen abszissen eines intervalles für welche die Quadratsumme der Gründfunctionen ein möglichts kleines maximum besitzt”, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(2), 1:3 (1932), 263–276 | MR | Zbl

[9] Smirnov V. I., Lebedev N. A., Konstruktivnaya teoriya funktsii, kompleksnogo peremennogo, Nauka, M., 1964 | MR