Congruences in two unknowns
Izvestiya. Mathematics , Tome 6 (1972) no. 4, pp. 677-704.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates the number $I_p$ of solutions of an algebraic congruence $F(x,y)\equiv0\pmod p$, where $p$ is a prime. Under certain conditions for the polynomial $F(x,y)$ the asymptotic formula $I_p=p+O(p^{1/2})$ is obtained by elementary methods.
@article{IM2_1972_6_4_a0,
     author = {S. A. Stepanov},
     title = {Congruences in two unknowns},
     journal = {Izvestiya. Mathematics },
     pages = {677--704},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a0/}
}
TY  - JOUR
AU  - S. A. Stepanov
TI  - Congruences in two unknowns
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 677
EP  - 704
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a0/
LA  - en
ID  - IM2_1972_6_4_a0
ER  - 
%0 Journal Article
%A S. A. Stepanov
%T Congruences in two unknowns
%J Izvestiya. Mathematics 
%D 1972
%P 677-704
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a0/
%G en
%F IM2_1972_6_4_a0
S. A. Stepanov. Congruences in two unknowns. Izvestiya. Mathematics , Tome 6 (1972) no. 4, pp. 677-704. http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a0/

[1] Weil A., Sur les courbes algébriques et les variétés qui s'en déduisent, Act. Sci. Ind., 1041, Paris, 1948 | MR | Zbl

[2] Stepanov S. A., “O chisle tochek giperellipticheskoi krivoi nad prostym konechnym polem”, Izv. AN SSSR. Ser. matem., 33:5 (1969), 1171–1181 | MR | Zbl

[3] Stepanov S. A., “Elementary method in the theory of congruences for a prime modulus”, Acta Arithm., 17:3 (1970), 231–247 | MR | Zbl

[4] Lang S., Abelian varieties, Interscience Tracts in Pure and Applied Mathematics, 7, Interscience Publishers, New York, 1959 | MR

[5] Eichler M., Einführung in die Theorie der algebraischen Zahlen und Funktionen, Basel, Stuttgart, 1963 | MR

[6] Stepanov S. A., “An Elementary Proof of the Hasse–Weil Theorem for Hyperelliptic Curves”, J. of Number Theory, 4:2 (1972), 118–143 | DOI | MR | Zbl

[7] Stepanov S. A., “Ob otsenke summ Veilya s prostym znamenatelem”, Izv. AN SSSR. Ser. matem., 34 (1970), 1015–1037 | MR

[8] Stepanov S. A., “Ob otsenke ratsionalnykh trigonometricheskikh summ s prostym znamenatelem”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 112, 1971, 346–371 | MR | Zbl