Congruences in two unknowns
Izvestiya. Mathematics , Tome 6 (1972) no. 4, pp. 677-704

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates the number $I_p$ of solutions of an algebraic congruence $F(x,y)\equiv0\pmod p$, where $p$ is a prime. Under certain conditions for the polynomial $F(x,y)$ the asymptotic formula $I_p=p+O(p^{1/2})$ is obtained by elementary methods.
@article{IM2_1972_6_4_a0,
     author = {S. A. Stepanov},
     title = {Congruences in two unknowns},
     journal = {Izvestiya. Mathematics },
     pages = {677--704},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a0/}
}
TY  - JOUR
AU  - S. A. Stepanov
TI  - Congruences in two unknowns
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 677
EP  - 704
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a0/
LA  - en
ID  - IM2_1972_6_4_a0
ER  - 
%0 Journal Article
%A S. A. Stepanov
%T Congruences in two unknowns
%J Izvestiya. Mathematics 
%D 1972
%P 677-704
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a0/
%G en
%F IM2_1972_6_4_a0
S. A. Stepanov. Congruences in two unknowns. Izvestiya. Mathematics , Tome 6 (1972) no. 4, pp. 677-704. http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a0/