Congruences in two unknowns
Izvestiya. Mathematics , Tome 6 (1972) no. 4, pp. 677-704
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper investigates the number $I_p$ of solutions of an algebraic congruence $F(x,y)\equiv0\pmod p$, where $p$ is a prime. Under certain conditions for the polynomial $F(x,y)$ the asymptotic formula $I_p=p+O(p^{1/2})$ is obtained by elementary methods.
@article{IM2_1972_6_4_a0,
author = {S. A. Stepanov},
title = {Congruences in two unknowns},
journal = {Izvestiya. Mathematics },
pages = {677--704},
publisher = {mathdoc},
volume = {6},
number = {4},
year = {1972},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a0/}
}
S. A. Stepanov. Congruences in two unknowns. Izvestiya. Mathematics , Tome 6 (1972) no. 4, pp. 677-704. http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a0/