Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1972_6_3_a7, author = {D. I. Gurevich}, title = {Generalized bases in certain rings of holomorphic functions}, journal = {Izvestiya. Mathematics }, pages = {564--578}, publisher = {mathdoc}, volume = {6}, number = {3}, year = {1972}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a7/} }
D. I. Gurevich. Generalized bases in certain rings of holomorphic functions. Izvestiya. Mathematics , Tome 6 (1972) no. 3, pp. 564-578. http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a7/
[1] Gurevich D. I., “O probleme L. Shvartsa”, Funkts. analiz, 5:1 (1971), 76–77 | MR | Zbl
[2] Krasichkov I. F., “O zamknutykh idealakh v lokalno vypuklykh algebrakh tselykh funktsii. II”, Izv. AN SSSR. Seriya matem., 32 (1968), 1024–1032 | Zbl
[3] Krasichkov I. F., “O zamknutykh idealakh v lokalno vypuklykh algebrakh tselykh funktsii. Algebry minimalnogo tipa”, Sib. matem. zh., 9 (1968), 77–96 | Zbl
[4] Palamodov V. P., “Gomologicheskie metody v teorii lokalno vypuklykh prostranstv”, Uspekhi matem. nauk, 26:1 (1971), 3–65 | MR | Zbl
[5] Rashevskii P. K., “O zamknutykh idealakh v odnoi schetno-normirovannoi algebre tselykh analiticheskikh funktsii”, Dokl. AN SSSR, 162:3 (1965), 513–515
[6] Ehrenpreis L., “Mean periodic function”, Amer. J. Math., 77:2 (1955), 293–328 | DOI | MR | Zbl
[7] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR
[8] Hörmander L., “Generators for some rings of analytic functions”, Bull. Amer. Math. Soc., 73:6 (1967), 943–949 | DOI | MR | Zbl
[9] Malgranzh B., “Ob uravneniyakh svertki”, Matematika, 7:2 (1963), 33–38
[10] Malgrange B., “Existence et approximation des solutions des équations aux derivées partielles et des équations de convolutions”, Ann. Inst. Fourier, 6 (1956), 271–355 | MR | Zbl
[11] Schwartz L., “Theorie generale des fonctions moyennes periodiques”, Ann. Math., 48:2 (1947), 857–929 | DOI | MR | Zbl
[12] Whitney H., “Analytic extensions of differentable functions defined in closed sets”, Trans. Amer. Math. Soc., 36 (1934), 63–89 | DOI | MR | Zbl