Minimal models of curves of genus~2 and homomorphisms of abelian varieties defined over a~field of finite characteristic
Izvestiya. Mathematics , Tome 6 (1972) no. 1, pp. 65-108
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article, we prove a finiteness theorem for isogenous abelian varieties of dimension 2 defined over a field of algebraic functions of one variable whose characteristic $\ne2$. By means of this result, we prove Tate's conjecture on homomorphisms of abelian varieties of dimension 1 defined over the same field.
@article{IM2_1972_6_1_a2,
author = {A. N. Parshin},
title = {Minimal models of curves of genus~2 and homomorphisms of abelian varieties defined over a~field of finite characteristic},
journal = {Izvestiya. Mathematics },
pages = {65--108},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {1972},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a2/}
}
TY - JOUR AU - A. N. Parshin TI - Minimal models of curves of genus~2 and homomorphisms of abelian varieties defined over a~field of finite characteristic JO - Izvestiya. Mathematics PY - 1972 SP - 65 EP - 108 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a2/ LA - en ID - IM2_1972_6_1_a2 ER -
%0 Journal Article %A A. N. Parshin %T Minimal models of curves of genus~2 and homomorphisms of abelian varieties defined over a~field of finite characteristic %J Izvestiya. Mathematics %D 1972 %P 65-108 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a2/ %G en %F IM2_1972_6_1_a2
A. N. Parshin. Minimal models of curves of genus~2 and homomorphisms of abelian varieties defined over a~field of finite characteristic. Izvestiya. Mathematics , Tome 6 (1972) no. 1, pp. 65-108. http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a2/