Minimal models of curves of genus~2 and homomorphisms of abelian varieties defined over a~field of finite characteristic
Izvestiya. Mathematics , Tome 6 (1972) no. 1, pp. 65-108

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we prove a finiteness theorem for isogenous abelian varieties of dimension 2 defined over a field of algebraic functions of one variable whose characteristic $\ne2$. By means of this result, we prove Tate's conjecture on homomorphisms of abelian varieties of dimension 1 defined over the same field.
@article{IM2_1972_6_1_a2,
     author = {A. N. Parshin},
     title = {Minimal models of curves of genus~2 and homomorphisms of abelian varieties defined over a~field of finite characteristic},
     journal = {Izvestiya. Mathematics },
     pages = {65--108},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a2/}
}
TY  - JOUR
AU  - A. N. Parshin
TI  - Minimal models of curves of genus~2 and homomorphisms of abelian varieties defined over a~field of finite characteristic
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 65
EP  - 108
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a2/
LA  - en
ID  - IM2_1972_6_1_a2
ER  - 
%0 Journal Article
%A A. N. Parshin
%T Minimal models of curves of genus~2 and homomorphisms of abelian varieties defined over a~field of finite characteristic
%J Izvestiya. Mathematics 
%D 1972
%P 65-108
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a2/
%G en
%F IM2_1972_6_1_a2
A. N. Parshin. Minimal models of curves of genus~2 and homomorphisms of abelian varieties defined over a~field of finite characteristic. Izvestiya. Mathematics , Tome 6 (1972) no. 1, pp. 65-108. http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a2/