Rational approximations to algebraic numbers
Izvestiya. Mathematics , Tome 5 (1971) no. 5, pp. 1003-1019.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we derive a new effective estimate of rational approximations to algebraic numbers simultaneously in an Archimedian and several non-Archimedian metrics.
@article{IM2_1971_5_5_a2,
     author = {V. G. Sprindzhuk},
     title = {Rational approximations to algebraic numbers},
     journal = {Izvestiya. Mathematics },
     pages = {1003--1019},
     publisher = {mathdoc},
     volume = {5},
     number = {5},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a2/}
}
TY  - JOUR
AU  - V. G. Sprindzhuk
TI  - Rational approximations to algebraic numbers
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 1003
EP  - 1019
VL  - 5
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a2/
LA  - en
ID  - IM2_1971_5_5_a2
ER  - 
%0 Journal Article
%A V. G. Sprindzhuk
%T Rational approximations to algebraic numbers
%J Izvestiya. Mathematics 
%D 1971
%P 1003-1019
%V 5
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a2/
%G en
%F IM2_1971_5_5_a2
V. G. Sprindzhuk. Rational approximations to algebraic numbers. Izvestiya. Mathematics , Tome 5 (1971) no. 5, pp. 1003-1019. http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a2/

[1] Sprindzhuk V. G., “Novoe primenenie $p$-adicheskogo analiza k predstavleniyam chisel binarnymi formami”, Izv. AN SSSR. Ser. matem., 34 (1970), 1038–1063 | Zbl

[2] Sprindzhuk V. G., “Effektivnaya otsenka ratsionalnykh priblizhenii k algebraicheskim chislam”, Dokl. AN BSSR, 14:8 (1970), 681–684 | Zbl

[3] Chebotarev N. G., Osnovy teorii Galua, ch. II, ONTI, M., L., 1937

[4] Chebotarev N. G., Sobr. soch., AN SSSR, M., L., 1949

[5] Baker A., “Contributions to the theory of Diophantine equation. I. On the representation of integers by binary forms”, Philos. Trans. Royal. Soc. London(A), 263:1139 (1968), 173–191 | DOI | MR | Zbl

[6] Coates J., “An effective $p$-adic analogue of a theorem of Thue”, Acta Arithmetica, 15 (1969), 279–305 | MR | Zbl

[7] Frobenius G., “Über Bezeihungen zwischen den Primidealen eines algebraische Körpers und die Substitutionen seiner Gruppe”, Sitzber. Berl. Akad., 1896, 689–705

[8] Liouville J., “Sur des classes très étendues de quantites dont la valeur n'est ni algebrique, ni même reductible à des irrationnelles algebriques”, Comptes rendus, 18 (1844), 883–885, 910–911; J. Math. pures et appl., 16 (1851), 133–142

[9] Ridout D., “The $p$-adic generalization of the Thue–Siegel–Roth Theorem”, Mathematika, 5 (1958), 40–48 | MR | Zbl

[10] Roth K. F., “Rational approximations to algebraic numbers”, Mathematika, 2 (1955), 1–20 and 168 | MR | Zbl