Uniform equivalence of parametric norms in ergodic and approximation theories
Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 915-934.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{T(X)\}$ be a uniformly bounded one-parameter strongly continuous group of operators on a Banach space. Suppose its corresponding ergodic projection exists and is zero. Then we can define a certain countable family of parametric norms (norms depending on a positive parameter $t$) whose rate of decay with respect to $t$ at a given element involves the “ergodic” properties of that element. They ate called the ergodic moduli of a given (positive integral) order. This article is basically devoted to explaining the properties of ergodic moduli and to finding one- and two-sided estimates for them in terms of other parametric norms. An interesting analogy can be drawn between the properties of ergodic moduli and those of the smoothness moduli of functions as studied in approximation theory.
@article{IM2_1971_5_4_a9,
     author = {K. K. Golovkin},
     title = {Uniform equivalence of parametric norms in ergodic and approximation theories},
     journal = {Izvestiya. Mathematics },
     pages = {915--934},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a9/}
}
TY  - JOUR
AU  - K. K. Golovkin
TI  - Uniform equivalence of parametric norms in ergodic and approximation theories
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 915
EP  - 934
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a9/
LA  - en
ID  - IM2_1971_5_4_a9
ER  - 
%0 Journal Article
%A K. K. Golovkin
%T Uniform equivalence of parametric norms in ergodic and approximation theories
%J Izvestiya. Mathematics 
%D 1971
%P 915-934
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a9/
%G en
%F IM2_1971_5_4_a9
K. K. Golovkin. Uniform equivalence of parametric norms in ergodic and approximation theories. Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 915-934. http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a9/

[1] Golovkin K. K., “Ob odnom obobschenii teoremy Martsinkevicha”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 102, 1967, 5–28 | MR | Zbl

[2] Golovkin K. K., “Parametricheski normirovannye prostranstva i normirovannye massivy”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 106, 1969, 1–134 | MR

[3] Wiener N., “The ergodic theorem”, Duke Math. J., 5 (1939), 1–18 | DOI | MR | Zbl

[4] Kuptsov N. P., “Pryamye i obratnye teoremy teorii priblizhenii i polugruppy operatorov”, Uspekhi matem. nauk, XXIII:4 (1968), 117–178

[5] Golovkin K. K., “Ob ekvivalentnykh normirovkakh drobnykh prostranstv”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 66, 1962, 364–383 | MR | Zbl

[6] Zygmund A., “The approximation of functions by typical means their Fourier series”, Duke Math. J., 12 (1945), 695–704 | DOI | MR | Zbl

[7] Stechkin S. B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matem., 15 (1951), 219–242 | Zbl

[8] Danford N., Shvarts D., Lineinye operatory. Obschaya teoriya, IL, M., 1962