Algebraic $K$-theory as extraordinary homology theory on the category of associative rings with unity
Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 859-887
Voir la notice de l'article provenant de la source Math-Net.Ru
Algebraic $K$-theory can be constructed by means of the homotopy groups of the abstract simplicial structure on the group of invertible matrices $GL(A)$ of the ring $A$. This structure may be naturally taken as two-sidedly invariant. Of basic interest is the multiplication in the functor so obtained, which for different rings $A$ assumes different aspects.
@article{IM2_1971_5_4_a7,
author = {I. A. Volodin},
title = {Algebraic $K$-theory as extraordinary homology theory on the category of associative rings with unity},
journal = {Izvestiya. Mathematics },
pages = {859--887},
publisher = {mathdoc},
volume = {5},
number = {4},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a7/}
}
TY - JOUR AU - I. A. Volodin TI - Algebraic $K$-theory as extraordinary homology theory on the category of associative rings with unity JO - Izvestiya. Mathematics PY - 1971 SP - 859 EP - 887 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a7/ LA - en ID - IM2_1971_5_4_a7 ER -
I. A. Volodin. Algebraic $K$-theory as extraordinary homology theory on the category of associative rings with unity. Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 859-887. http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a7/