On the theory of generalized manifolds
Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 845-857.

Voir la notice de l'article provenant de la source Math-Net.Ru

A simple construction is given for proving the Poincaré duality theorem for generalized manifolds, which also applies to generalized manifolds without locally constant “orientation” sheaves (for example, to manifolds with “boundary”). It appears that some other well-known duality relations in generalized manifolds are either special cases of Poincaré duality, or simple consequences of it.
@article{IM2_1971_5_4_a6,
     author = {E. G. Sklyarenko},
     title = {On the theory of generalized manifolds},
     journal = {Izvestiya. Mathematics },
     pages = {845--857},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a6/}
}
TY  - JOUR
AU  - E. G. Sklyarenko
TI  - On the theory of generalized manifolds
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 845
EP  - 857
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a6/
LA  - en
ID  - IM2_1971_5_4_a6
ER  - 
%0 Journal Article
%A E. G. Sklyarenko
%T On the theory of generalized manifolds
%J Izvestiya. Mathematics 
%D 1971
%P 845-857
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a6/
%G en
%F IM2_1971_5_4_a6
E. G. Sklyarenko. On the theory of generalized manifolds. Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 845-857. http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a6/

[1] Godeman R., Algebraicheskaya topologiya i teoriya puchkov, IL, M., 1961

[2] Kuzminov V. I., “Gomologicheskaya teoriya razmernosti”, Uspekhi matem. nauk, 23:5 (1968), 3–49 | MR

[3] Sklyarenko E. G., “Teoriya gomologii i aksioma tochnosti”, Uspekhi matem. nauk, 24:5 (1969), 87–140 | MR | Zbl

[4] Sklyarenko E. G., “Teoremy edinstvennosti v teorii gomologii”, Matem. sb., 85(127):2(6) (1971), 201–223 | Zbl

[5] Stinrod N., Eilenberg S., Osnovaniya algebraicheskoi topologii, IL, M., 1958

[6] Borel A., “The Poincaré duality in generalized manifolds”, Michig. Math. J., 4 (1957), 227–239 | DOI | MR

[7] Borel A., Seminar on transformation groups, Annals of Mathematics Studies, 46, Princeton University Press, Princeton, N.J., 1960 | MR | Zbl

[8] Borel A., Moore J. C., “Homology theory for locally compact spaces”, Michig. Math. J., 7 (1960), 137–160 | DOI | MR

[9] Bredon G. E., “Wilder manifolds are locally orientable”, Proc. Nat. Acad. Sci. USA, 63:4 (1969), 1079–1081 | DOI | MR | Zbl

[10] Kaup L., Keane M. S., “Inductive limiten endlich erzeugter freier moduln”, Manuscr. math., 1:1 (1969), 9–21 | DOI | MR | Zbl

[11] Kwun K. W., Raymond F., “Factors of cubes”, Amer. J. Math., 84 (1962), 433–440 | DOI | MR | Zbl

[12] Raymond F., “Separation und union theorems for generalized manifolds with boundary”, Michig. Math. J., 7 (1960), 7–21 | DOI | MR | Zbl

[13] Raymond F., “Local cohomology groups with closed supports”, Math. Z., 76:1 (1961), 31–41 | DOI | MR | Zbl

[14] Raymond F., “Two problems in the theory of generalized manifolds”, Michig. Math. J., 14:3 (1967), 353–356 | DOI | MR | Zbl

[15] Rosen R. H., “$E^4$ is the cartesian product of a totally non-euclidean space and $E^1$”, Ann. Math., 73 (1961), 349–361 | DOI | MR | Zbl

[16] Steenrod N. E., “Regular cycles of compact metric spaces”, Ann. Math., 41 (1940), 833–851 | DOI | MR | Zbl

[17] Swan R. G., The theory of sheaves, University of Chicago Press, Chicago, 1964 | Zbl

[18] Wilder R. L., Topology of Manifolds, American Mathematical Society Colloquium Publications, 32, American Mathematical Society, New York, 1949 | MR | Zbl

[19] Williams R. F., “The construction of certain 0-dimensional transformation groups”, Trans. Amer. Math. Soc., 129:1 (1967), 140–156 | DOI | MR | Zbl

[20] Wyler A., “Sur certaines singularités duplications de variétés topologiques”, Comment. math. helv., 42:1 (1967), 28–48 | DOI | MR | Zbl