@article{IM2_1971_5_4_a5,
author = {Ya. G. Berkovich},
title = {A~generalization of the theorems of {Hall} and {Blackburn} and their applications to nonregular $p$-groups},
journal = {Izvestiya. Mathematics},
pages = {815--844},
year = {1971},
volume = {5},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a5/}
}
Ya. G. Berkovich. A generalization of the theorems of Hall and Blackburn and their applications to nonregular $p$-groups. Izvestiya. Mathematics, Tome 5 (1971) no. 4, pp. 815-844. http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a5/
[1] Blackburn N., “On a special class of $p$-groups”, Acta Math., 100 (1958), 45–92 | DOI | MR | Zbl
[2] Blackburn N., “Generalization of certain elementary theorems on $p$-groups”, Proc. London Math. Soc., 11 (1961), 1–21 | DOI | MR
[3] Berkovich Ya. G., “O $p$-gruppakh konechnogo poryadka”, Sib. matem. zh., 9:6 (1968), 1284–1306 | MR | Zbl
[4] Hall Ph., “A contribution to the theory of groups of prime power order”, Proc. London Math. Soc., 36 (1933), 29–95 | DOI | Zbl
[5] Hall Ph., “On a theorem of Frobenius”, Proc. London Math. Soc., 40 (1936), 468–501 | DOI | Zbl
[6] Huppert B., Endliche Gruppen, bd. I, Berlin, 1967 | Zbl
[7] Lam T.–Y., “Artin exponent of Finite groups”, J. Algebra, 9:1 (1968), 94–119 | DOI | MR | Zbl
[8] Berkovich V. G., “Gruppy poryadka $p^n$, dopuskayuschie avtomorfizm poryadka $p^{n-1}$”, Algebra i logika, 9:1 (1970), 3–8 | Zbl
[9] Berkovich Ya. G., “Podgruppy, normalnye deliteli i epimorfnye obrazy konechnoi $p$-gruppy”, Dokl. AN SSSR, 187:3 (1969), 499–501 | MR | Zbl
[10] Berkovich Ya. G., “Podgruppovoe i normalnoe stroenie konechnoi $p$-gruppy”, Dokl. AN SSSR, 196:2 (1971), 255–258 | Zbl
[11] Passman D. S., “Nonnormal subgroups of $p$-groups”, J. Algebra, 15:3 (1970), 352–370 | DOI | MR | Zbl
[12] Hobby C., “The Frattini subgroup of a $p$-group”, Illinois J. Math., 5 (1961), 209–212 | MR