A~generalization of the theorems of Hall and Blackburn and their applications to nonregular $p$-groups
Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 815-844.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we improve Philip Hall's estimate for the number of cyclic subgroups in a finite $p$-group. From our result it follows that if a $p$-group $G$ is not absolutely regular and not a group of maximal class, then 1) the number of solutions of the equation $x^p=1$ in $G$ is equal to $p^p + k(p-1)p^p$, where $k$ is a nonnegative integer; 2) if $n>1$, then the number of solutions of the equation $x^{p^n}=1$ in $G$ is divisible by $p^{n+p-1}$. This permits us to strengthen important theorems of Hall and Norman Blackburn on the existence of normal subgroups of prime exponent. The latter results in turn permit us to give a factorization of $p$-groups with absolutely regular Frattini subgroup. Another application is a theorem on the number of subgroups of maximal class in a $p$-group.
@article{IM2_1971_5_4_a5,
     author = {Ya. G. Berkovich},
     title = {A~generalization of the theorems of {Hall} and {Blackburn} and their applications to nonregular $p$-groups},
     journal = {Izvestiya. Mathematics },
     pages = {815--844},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a5/}
}
TY  - JOUR
AU  - Ya. G. Berkovich
TI  - A~generalization of the theorems of Hall and Blackburn and their applications to nonregular $p$-groups
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 815
EP  - 844
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a5/
LA  - en
ID  - IM2_1971_5_4_a5
ER  - 
%0 Journal Article
%A Ya. G. Berkovich
%T A~generalization of the theorems of Hall and Blackburn and their applications to nonregular $p$-groups
%J Izvestiya. Mathematics 
%D 1971
%P 815-844
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a5/
%G en
%F IM2_1971_5_4_a5
Ya. G. Berkovich. A~generalization of the theorems of Hall and Blackburn and their applications to nonregular $p$-groups. Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 815-844. http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a5/

[1] Blackburn N., “On a special class of $p$-groups”, Acta Math., 100 (1958), 45–92 | DOI | MR | Zbl

[2] Blackburn N., “Generalization of certain elementary theorems on $p$-groups”, Proc. London Math. Soc., 11 (1961), 1–21 | DOI | MR

[3] Berkovich Ya. G., “O $p$-gruppakh konechnogo poryadka”, Sib. matem. zh., 9:6 (1968), 1284–1306 | MR | Zbl

[4] Hall Ph., “A contribution to the theory of groups of prime power order”, Proc. London Math. Soc., 36 (1933), 29–95 | DOI | Zbl

[5] Hall Ph., “On a theorem of Frobenius”, Proc. London Math. Soc., 40 (1936), 468–501 | DOI | Zbl

[6] Huppert B., Endliche Gruppen, bd. I, Berlin, 1967 | Zbl

[7] Lam T.–Y., “Artin exponent of Finite groups”, J. Algebra, 9:1 (1968), 94–119 | DOI | MR | Zbl

[8] Berkovich V. G., “Gruppy poryadka $p^n$, dopuskayuschie avtomorfizm poryadka $p^{n-1}$”, Algebra i logika, 9:1 (1970), 3–8 | Zbl

[9] Berkovich Ya. G., “Podgruppy, normalnye deliteli i epimorfnye obrazy konechnoi $p$-gruppy”, Dokl. AN SSSR, 187:3 (1969), 499–501 | MR | Zbl

[10] Berkovich Ya. G., “Podgruppovoe i normalnoe stroenie konechnoi $p$-gruppy”, Dokl. AN SSSR, 196:2 (1971), 255–258 | Zbl

[11] Passman D. S., “Nonnormal subgroups of $p$-groups”, J. Algebra, 15:3 (1970), 352–370 | DOI | MR | Zbl

[12] Hobby C., “The Frattini subgroup of a $p$-group”, Illinois J. Math., 5 (1961), 209–212 | MR