Bott periodicity from the point of view of an $n$-dimensional Dirichlet functional
Izvestiya. Mathematics , Tome 5 (1971) no. 3, pp. 681-695.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates topological effects associated with an $n$-dimensional Dirichlet functional on spaces of representations of disks with fixed boundaries in compact Lie groups $U(n)$, $O(n)$ or $S_p(n)$. It turns out that the classical Bott periodicity arises naturally when one considers the set of points at which the Dirichlet functional attains an absolute minimum, and the periodicity isomorphism is obtained using this approach “in one step” and not in several steps as it was the case when the one-dimensional action functional on the space of loops was used.
@article{IM2_1971_5_3_a9,
     author = {A. T. Fomenko},
     title = {Bott periodicity from the point of view of an $n$-dimensional {Dirichlet} functional},
     journal = {Izvestiya. Mathematics },
     pages = {681--695},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a9/}
}
TY  - JOUR
AU  - A. T. Fomenko
TI  - Bott periodicity from the point of view of an $n$-dimensional Dirichlet functional
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 681
EP  - 695
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a9/
LA  - en
ID  - IM2_1971_5_3_a9
ER  - 
%0 Journal Article
%A A. T. Fomenko
%T Bott periodicity from the point of view of an $n$-dimensional Dirichlet functional
%J Izvestiya. Mathematics 
%D 1971
%P 681-695
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a9/
%G en
%F IM2_1971_5_3_a9
A. T. Fomenko. Bott periodicity from the point of view of an $n$-dimensional Dirichlet functional. Izvestiya. Mathematics , Tome 5 (1971) no. 3, pp. 681-695. http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a9/

[1] Bott R., “Nondegenerate critical manifolds”, Ann. Math.(2), 60:2 (1954), 248–261 | DOI | MR | Zbl

[2] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR

[3] Atiyah M. F., “Algebraic topology and elliptic operators”, Comm. Pure Appl. Math., 20 (1967), 237–249 | MR | Zbl

[4] Morrey Ch. B., Multiple integrals in the calculus of variations, Springer, Berlin, 1966 | MR | Zbl

[5] Palais R., Smale S., “A generalized Morse theory”, Bull. Amer. Math. Soc., 70:1 (1964), 165 | DOI | MR | Zbl

[6] Alber S. I., “O prostranstvakh otobrazhenii v mnogoobrazie otritsatelnoi krivizny”, Dokl. AN SSSR, 178:1 (1968), 13–16 | MR