Scattering problems for differential operators with perturbation of the space
Izvestiya. Mathematics , Tome 5 (1971) no. 2, pp. 459-474

Voir la notice de l'article provenant de la source Math-Net.Ru

For differential operators with constant coefficients in $R^m$ we study the existence and completeness of wave operators corresponding to perturbation of the metric of the original Hilbert space. The results are applied, in particular, to scattering problems of Maxwell's system in an anisotropic medium and for the wave equation. The study is based on abstract criteria (of “nuclear type”) of existence of complete wave operators.
@article{IM2_1971_5_2_a9,
     author = {M. Sh. Birman},
     title = {Scattering problems for differential operators with perturbation of the space},
     journal = {Izvestiya. Mathematics },
     pages = {459--474},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_2_a9/}
}
TY  - JOUR
AU  - M. Sh. Birman
TI  - Scattering problems for differential operators with perturbation of the space
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 459
EP  - 474
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_2_a9/
LA  - en
ID  - IM2_1971_5_2_a9
ER  - 
%0 Journal Article
%A M. Sh. Birman
%T Scattering problems for differential operators with perturbation of the space
%J Izvestiya. Mathematics 
%D 1971
%P 459-474
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_2_a9/
%G en
%F IM2_1971_5_2_a9
M. Sh. Birman. Scattering problems for differential operators with perturbation of the space. Izvestiya. Mathematics , Tome 5 (1971) no. 2, pp. 459-474. http://geodesic.mathdoc.fr/item/IM2_1971_5_2_a9/