Extreme values of functionals and best approximation on classes of periodic functions
Izvestiya. Mathematics , Tome 5 (1971) no. 1, pp. 97-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we compute upper bounds for the best approximation by trigonometric polynomials in the metrics $C$ and $L$ on the classes $W^rH_\omega$ of $2\pi$-periodic functions such that $|f^{(r)}(x')-f^{(r)}(x'')|\leqslant\omega(|x'-x''|)$, where $\omega(t)$ is a given convex modulus of continuity. In doing this, we obtain a series of results which explain certain new properties of differentiable functions expressed in terms of rearrangements. Also, we obtain precise estimates for functionals of the form $\int_0^{2\pi}fg\,dx$, where $f\in H_\omega$, and $g$ belongs to a certain class of differentiable functions defined by bounds on the norm of $g$ and its derivatives in $C$ or $L$.
@article{IM2_1971_5_1_a7,
     author = {N. P. Korneichuk},
     title = {Extreme values of functionals and best approximation on classes of periodic functions},
     journal = {Izvestiya. Mathematics },
     pages = {97--129},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a7/}
}
TY  - JOUR
AU  - N. P. Korneichuk
TI  - Extreme values of functionals and best approximation on classes of periodic functions
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 97
EP  - 129
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a7/
LA  - en
ID  - IM2_1971_5_1_a7
ER  - 
%0 Journal Article
%A N. P. Korneichuk
%T Extreme values of functionals and best approximation on classes of periodic functions
%J Izvestiya. Mathematics 
%D 1971
%P 97-129
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a7/
%G en
%F IM2_1971_5_1_a7
N. P. Korneichuk. Extreme values of functionals and best approximation on classes of periodic functions. Izvestiya. Mathematics , Tome 5 (1971) no. 1, pp. 97-129. http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a7/

[1] Favard J., “Sur l'approximation des fonctions periodiques par des polynomes trigonometriques”, Compt. rend. Acad. Sci., 203 (1936), 1122–1124 | Zbl

[2] Favard J., “Sur les meilleurs procèdès d'approximation de certaines classes de fonctions par des polynomes trigonometriques”, Bull. Sci. Math., 61 (1937), 209–224, 243–256 | Zbl

[3] Akhiezer N. I., Krein M. G., “O nailuchshem priblizhenii trigonometricheskimi summami differentsiruemykh periodicheskikh funktsii”, Dokl. AN SSSR, 15 (1937), 107–112

[4] Nikolskii S. M., “Priblizhenie funktsii trigonometricheskimi polinomami v srednem”, Izv. AN SSSR. Ser. matem., 10 (1946), 207–256

[5] Dzyadyk V. K., “O nailuchshem priblizhenii na klassakh funktsii, opredelyaemykh yadrami, yavlyayuschimisya integralami ot absolyutno monotonnykh funktsii”, Izv. AN SSSR. Ser. matem., 23 (1959), 933–950 | MR | Zbl

[6] Korneichuk N. P., “O nailuchshem ravnomernom priblizhenii na nekotorykh klassakh nepreryvnykh funktsii”, Dokl. AN SSSR, 140 (1961), 748–751

[7] Korneichuk N. P., “O nailuchshem ravnomernom priblizhenii differentsiruemykh funktsii”, Dokl. AN SSSR, 141 (1961), 304–307

[8] Korneichuk N. P., “O nailuchshem priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matem., 27 (1963), 29–44

[9] Korneichuk N. P., “Tochnoe znachenie nailuchshikh priblizhenii i poperechnikov nekotorykh klassov funktsii”, Dokl. AN SSSR, 150 (1963), 1218–1220

[10] Kolmogorov A. N., “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh proizvolnoi funktsii na beskonechnom intervale”, Matematika, t. 3, Uch. zap. Mosk. un-ta, 30, 1939, 3–13

[11] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, GITTL, M., 1950

[12] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948

[13] Korneichuk N. P., “O priblizhenii periodicheskikh funktsii, udovletvoryayuschikh usloviyu Lipshitsa, summami Bernshteina–Rogozinskogo”, Dokl. AN SSSR, 125 (1959), 258–261

[14] Korneichuk N. P., “Ob ekstremalnykh svoistvakh periodicheskikh funktsii”, Dokl. AN USSR, 1962, no. 8, 993–998

[15] Korneichuk N. P., “Ob otsenke priblizhenii funktsii klassa $H^{(\alpha)}$ trigonometricheskimi mnogochlenami”, Issledovaniya po sovremennym problemam konstruktivnoi teorii funktsii, M., 1961, 148–154

[16] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[17] Taikov L. V., “O priblizhenii v srednem nekotorykh klassov periodicheskikh funktsii”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 88, 1967, 61–70 | MR | Zbl

[18] Turovets S. P., “O nailuchshem priblizhenii v srednem differentsiruemykh funktsii”, Dokl. AN USSR, 1968, no. 5, 417–421 | Zbl

[19] Tikhomirov V. M., “Poperechniki mnozhestv v funktsionalnykh prostranstvakh i teoriya nailuchshikh priblizhenii”, Uspekhi matem. nauk, XV:3(93) (1960), 81–120

[20] Lorentz G. G., Approximation of Functions, Holt, Rinehart and Winston, New York, 1966 | MR | Zbl

[21] Korneichuk N. P., “Verkhnie grani nailuchshikh priblizhenii na klassakh differentsiruemykh periodicheskikh funktsii v metrikakh $C$ i $L$”, Dokl. AN SSSR, 190 (1970), 269–271