Extreme values of functionals and best approximation on classes of periodic functions
Izvestiya. Mathematics , Tome 5 (1971) no. 1, pp. 97-129

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we compute upper bounds for the best approximation by trigonometric polynomials in the metrics $C$ and $L$ on the classes $W^rH_\omega$ of $2\pi$-periodic functions such that $|f^{(r)}(x')-f^{(r)}(x'')|\leqslant\omega(|x'-x''|)$, where $\omega(t)$ is a given convex modulus of continuity. In doing this, we obtain a series of results which explain certain new properties of differentiable functions expressed in terms of rearrangements. Also, we obtain precise estimates for functionals of the form $\int_0^{2\pi}fg\,dx$, where $f\in H_\omega$, and $g$ belongs to a certain class of differentiable functions defined by bounds on the norm of $g$ and its derivatives in $C$ or $L$.
@article{IM2_1971_5_1_a7,
     author = {N. P. Korneichuk},
     title = {Extreme values of functionals and best approximation on classes of periodic functions},
     journal = {Izvestiya. Mathematics },
     pages = {97--129},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a7/}
}
TY  - JOUR
AU  - N. P. Korneichuk
TI  - Extreme values of functionals and best approximation on classes of periodic functions
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 97
EP  - 129
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a7/
LA  - en
ID  - IM2_1971_5_1_a7
ER  - 
%0 Journal Article
%A N. P. Korneichuk
%T Extreme values of functionals and best approximation on classes of periodic functions
%J Izvestiya. Mathematics 
%D 1971
%P 97-129
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a7/
%G en
%F IM2_1971_5_1_a7
N. P. Korneichuk. Extreme values of functionals and best approximation on classes of periodic functions. Izvestiya. Mathematics , Tome 5 (1971) no. 1, pp. 97-129. http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a7/