Diophantine representation of enumerable predicates
Izvestiya. Mathematics , Tome 5 (1971) no. 1, pp. 1-28

Voir la notice de l'article provenant de la source Math-Net.Ru

An example is given of a diophantine relation which has exponential growth. This, together with the well-known results of Martin Davis, Hilary Putnam, and Julia Robinson, yields a proof that every enumerable predicate is Diophantine. This theorem implies that Hilbert's tenth problem is algorithmically unsolvable.
@article{IM2_1971_5_1_a0,
     author = {Yu. V. Matiyasevich},
     title = {Diophantine representation of enumerable predicates},
     journal = {Izvestiya. Mathematics },
     pages = {1--28},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a0/}
}
TY  - JOUR
AU  - Yu. V. Matiyasevich
TI  - Diophantine representation of enumerable predicates
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 1
EP  - 28
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a0/
LA  - en
ID  - IM2_1971_5_1_a0
ER  - 
%0 Journal Article
%A Yu. V. Matiyasevich
%T Diophantine representation of enumerable predicates
%J Izvestiya. Mathematics 
%D 1971
%P 1-28
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a0/
%G en
%F IM2_1971_5_1_a0
Yu. V. Matiyasevich. Diophantine representation of enumerable predicates. Izvestiya. Mathematics , Tome 5 (1971) no. 1, pp. 1-28. http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a0/