Preservation of an invariant torus under perturbation
Izvestiya. Mathematics , Tome 4 (1970) no. 6, pp. 1225-1249

Voir la notice de l'article provenant de la source Math-Net.Ru

There is presented a new approach to the theory of perturbation of invariant toroidal manifolds of dynamical systems related to use of Green's functions for a linearized problem. This approach permits the presentation, from a single and general point of view, of the theory of perturbation of smooth as well as of nondifferentiable invariant manifolds of dynamical systems, and also permits the proof of new theorems on the existence of such manifolds.
@article{IM2_1970_4_6_a3,
     author = {A. M. Samoilenko},
     title = {Preservation of an invariant torus under perturbation},
     journal = {Izvestiya. Mathematics },
     pages = {1225--1249},
     publisher = {mathdoc},
     volume = {4},
     number = {6},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_6_a3/}
}
TY  - JOUR
AU  - A. M. Samoilenko
TI  - Preservation of an invariant torus under perturbation
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 1225
EP  - 1249
VL  - 4
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_6_a3/
LA  - en
ID  - IM2_1970_4_6_a3
ER  - 
%0 Journal Article
%A A. M. Samoilenko
%T Preservation of an invariant torus under perturbation
%J Izvestiya. Mathematics 
%D 1970
%P 1225-1249
%V 4
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_6_a3/
%G en
%F IM2_1970_4_6_a3
A. M. Samoilenko. Preservation of an invariant torus under perturbation. Izvestiya. Mathematics , Tome 4 (1970) no. 6, pp. 1225-1249. http://geodesic.mathdoc.fr/item/IM2_1970_4_6_a3/