Preservation of an invariant torus under perturbation
Izvestiya. Mathematics , Tome 4 (1970) no. 6, pp. 1225-1249.

Voir la notice de l'article provenant de la source Math-Net.Ru

There is presented a new approach to the theory of perturbation of invariant toroidal manifolds of dynamical systems related to use of Green's functions for a linearized problem. This approach permits the presentation, from a single and general point of view, of the theory of perturbation of smooth as well as of nondifferentiable invariant manifolds of dynamical systems, and also permits the proof of new theorems on the existence of such manifolds.
@article{IM2_1970_4_6_a3,
     author = {A. M. Samoilenko},
     title = {Preservation of an invariant torus under perturbation},
     journal = {Izvestiya. Mathematics },
     pages = {1225--1249},
     publisher = {mathdoc},
     volume = {4},
     number = {6},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_6_a3/}
}
TY  - JOUR
AU  - A. M. Samoilenko
TI  - Preservation of an invariant torus under perturbation
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 1225
EP  - 1249
VL  - 4
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_6_a3/
LA  - en
ID  - IM2_1970_4_6_a3
ER  - 
%0 Journal Article
%A A. M. Samoilenko
%T Preservation of an invariant torus under perturbation
%J Izvestiya. Mathematics 
%D 1970
%P 1225-1249
%V 4
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_6_a3/
%G en
%F IM2_1970_4_6_a3
A. M. Samoilenko. Preservation of an invariant torus under perturbation. Izvestiya. Mathematics , Tome 4 (1970) no. 6, pp. 1225-1249. http://geodesic.mathdoc.fr/item/IM2_1970_4_6_a3/

[1] Bogolyubov N. N., O nekotorykh statisticheskikh metodakh v matematicheskoi fizike, AN USSR, Kiev, 1945

[2] Bogolyubov N. N., Mitropolskii Yu. A., “Metod integralnykh mnogoobrazii v nelineinoi mekhanike”, Tr. mezhdun. simpoz. po nelin. koleb., t. I, AN USSR, Kiev, 1963, 93–154

[3] Mitropolskii Yu. A., “Ob issledovanii integralnogo mnogoobraziya dlya sistemy nelineinykh uravnenii s peremennymi koeffitsientami”, Ukr. matem. zh., 10:3 (1958), 270–279

[4] Mitropolskii Yu. A., Lykova O. B., Lektsii po metodu integralnykh mnogoobrazii, preprint In-ta matem. AN USSR, Kiev, 1968 | MR

[5] Lykova O. B., “Ob integralnykh mnogoobraziyakh dlya nelineinykh kolebatelnykh sistem”, Nonlinear Vibrat. Probl. 5, Second Conference on Nonlinear Vibrations (18–21 sept. 1962), Warsaw, 1964, 149–155

[6] Diliberto S. P., “Petrurbation Theory of Invariant Surface. I–IV”, Mimeographed ONR Reports, Berkeley, 1956–1957

[7] Hale I. K., “Integral Manifolds of Perturbed Differential Systems”, Ann. Math., 73 (1961), 496–531 | DOI | MR | Zbl

[8] Mc Carthy J., “The Stability of Invariant Manifolds”, Bull. Amer. Math. Soc., 61 (1955), 149–150

[9] Kyner W. T., “A fixed point theorem”, Contributions to the theory of nonlinear oscillations, vol. 3, Annals of Mathematics Studies, No 36, Princeton University Press, Princeton, N. J., 1956, 197–205 | MR

[10] Kyner W. T., “Invariant manifolds Rend del Circolo”, Mat. Palermo (II), 9 (1961), 98–110 | DOI | MR

[11] Kupka I., “Stabilité des variétés invariantes d'un champ de vecteurs pour les petites perturbations”, C. R. Acad. Sci. Paris, 258 (1964), 4197–4200 | MR | Zbl

[12] Kurzweil J., “Invariant manifolds for flows”, Differential Equations and Dynamical Systems, Proc. Internat. Sympos. (Mayaguez, P. R., 1965), Academic Press, New York, 1967, 431–468 | MR

[13] Kurtsveil Ya., “Invariantnye mnogoobraziya differentsialnykh sistem”, Dif. uravn., 4:5 (1968), 785–797

[14] Mozer Yu., “Bystro skhodyaschiisya metod iteratsii i nelineinye differentsialnye uravneniya”, Uspekhi matem. nauk, 23:4(142) (1968), 179–238 | MR

[15] Sacker R., “A New Approach to the Perturbation Theory of Invariant Surfaces”, Comm. Pure Appl. Math., 18:4 (1965), 717–732 | DOI | MR | Zbl

[16] Sacker R., “A perturbation theorem for invariant Riemannian manifolds”, Differential Equations and Dynamical Systems, Proc. Internat. Sympos. (Mayaguez, P. R., 1965), Academic Press, New York, 1967, 43–54 | MR

[17] Kolmogorov A. N., “O sokhranenii uslovno periodicheskikh dvizhenii pri malom izmenenii funktsii Gamiltona”, Dokl. AN SSSR, 98:4 (1954), 527–530 | MR | Zbl

[18] Kolmogorov A. N., “Obschaya teoriya dinamicheskikh sistem i klassicheskaya mekhanika”, Mezhdun. matem. kongress v Amsterdame, Fizmatgiz, M., 1961, 187–208

[19] Arnold V. I., “Malye znamenateli. I. Ob otobrazheniyakh okruzhnosti na sebya”, Izv. AN SSSR. Ser. matem., 25 (1961), 21–86

[20] Arnold V. I., “Malye znamenateli i problemy ustoichivosti dvizheniya v klassicheskoi i nebesnoi mekhanike”, Uspekhi matem. nauk, 18:6(114) (1963), 81–192

[21] Arnold V. I., “Dokazatelstvo teoremy A. N. Kolmogorova o sokhranenii uslovno periodicheskikh dvizhenii pri malom izmenenii funktsii Gamiltona”, Uspekhi matem. nauk, 18:5(113) (1963), 13–40 | MR

[22] Moser J., “On invariant curves of area-preserving mappings of an annulus”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1962:1 (1962), 1–20 | MR | Zbl

[23] Moser J., “A new technique for the construction of solutions of nonlinear differential equations”, Proc. Nat. Acad. Sci. USA, 47:11 (1961), 1824–1831 | DOI | MR | Zbl

[24] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Teoriya pokazatelei Lyapunova, Nauka, M., 1966 | Zbl

[25] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR