Commutative products of linear $\Omega$-algebras
Izvestiya. Mathematics , Tome 4 (1970) no. 5, pp. 979-999
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study $\mathbf P$-products of $\Omega$-algebras which are linear over some field. We characterize the subalgebras of the $\mathbf P$-products for the case when $\mathbf P$ consists of zero order commutative identities, and the subalgebra belongs to the manifold $\mathfrak M_{\mathbf P}$. We investigate the question of the structure of an arbitrary subalgebra of the $\mathbf P$-product, as well as some cases of $\mathbf P$-products for commutative identities of nonzero order. We look into the possibility of $\mathbf P$-decomposing a linear $\Omega$-algebra from an arbitrary manifold $\mathfrak M_{\mathbf S}$ and give necessary conditions for this.
@article{IM2_1970_4_5_a1,
author = {M. S. Burgin},
title = {Commutative products of linear $\Omega$-algebras},
journal = {Izvestiya. Mathematics },
pages = {979--999},
publisher = {mathdoc},
volume = {4},
number = {5},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_5_a1/}
}
M. S. Burgin. Commutative products of linear $\Omega$-algebras. Izvestiya. Mathematics , Tome 4 (1970) no. 5, pp. 979-999. http://geodesic.mathdoc.fr/item/IM2_1970_4_5_a1/