On affine surfaces that can be completed by a nonsingular rational
Izvestiya. Mathematics, Tome 4 (1970) no. 4, pp. 787-810
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that an affine nonsingular surface which can be completed by a nonsingular rational curve is quasi-homogeneous. The homogeneity of such surfaces is proved in the case of characteristic zero.
@article{IM2_1970_4_4_a5,
author = {M. Kh. Gizatullin},
title = {On affine surfaces that can be completed by a nonsingular rational},
journal = {Izvestiya. Mathematics},
pages = {787--810},
year = {1970},
volume = {4},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_4_a5/}
}
M. Kh. Gizatullin. On affine surfaces that can be completed by a nonsingular rational. Izvestiya. Mathematics, Tome 4 (1970) no. 4, pp. 787-810. http://geodesic.mathdoc.fr/item/IM2_1970_4_4_a5/
[1] Algebraicheskie poverkhnosti, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 75, 1965 | MR | Zbl
[2] Mamford D., Lektsii o krivykh na algebraicheskoi poverkhnosti, Mir, M., 1968
[3] Shafarevich I. R., Lectures on minimal models and birational transformations of two dimensional shemes, Tata Institute of Fundamental Research, Bombay, 1966 | MR
[4] Mumford D., Geometric Invariant Theory, Springer, Berlin, 1965 | MR | Zbl
[5] Picard E., Simart G., Théorie des fonctions algébriques de deux variables indépendantes, v. II, Paris, 1906
[6] Akizuki Y., “Theorems of Bertini on linear systems”, J. Math. Soc. Japan, 3:1 (1951), 170–180 | MR | Zbl
[7] Grothendieck A., “Elements de geometric algebrique. IV”, Publ. Math. IHES, 1967, no. 32 | MR