On affine surfaces that can be completed by a nonsingular rational
Izvestiya. Mathematics , Tome 4 (1970) no. 4, pp. 787-810.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that an affine nonsingular surface which can be completed by a nonsingular rational curve is quasi-homogeneous. The homogeneity of such surfaces is proved in the case of characteristic zero.
@article{IM2_1970_4_4_a5,
     author = {M. Kh. Gizatullin},
     title = {On affine surfaces that can be completed by a nonsingular rational},
     journal = {Izvestiya. Mathematics },
     pages = {787--810},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_4_a5/}
}
TY  - JOUR
AU  - M. Kh. Gizatullin
TI  - On affine surfaces that can be completed by a nonsingular rational
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 787
EP  - 810
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_4_a5/
LA  - en
ID  - IM2_1970_4_4_a5
ER  - 
%0 Journal Article
%A M. Kh. Gizatullin
%T On affine surfaces that can be completed by a nonsingular rational
%J Izvestiya. Mathematics 
%D 1970
%P 787-810
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_4_a5/
%G en
%F IM2_1970_4_4_a5
M. Kh. Gizatullin. On affine surfaces that can be completed by a nonsingular rational. Izvestiya. Mathematics , Tome 4 (1970) no. 4, pp. 787-810. http://geodesic.mathdoc.fr/item/IM2_1970_4_4_a5/

[1] Algebraicheskie poverkhnosti, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 75, 1965 | MR | Zbl

[2] Mamford D., Lektsii o krivykh na algebraicheskoi poverkhnosti, Mir, M., 1968

[3] Shafarevich I. R., Lectures on minimal models and birational transformations of two dimensional shemes, Tata Institute of Fundamental Research, Bombay, 1966 | MR

[4] Mumford D., Geometric Invariant Theory, Springer, Berlin, 1965 | MR | Zbl

[5] Picard E., Simart G., Théorie des fonctions algébriques de deux variables indépendantes, v. II, Paris, 1906

[6] Akizuki Y., “Theorems of Bertini on linear systems”, J. Math. Soc. Japan, 3:1 (1951), 170–180 | MR | Zbl

[7] Grothendieck A., “Elements de geometric algebrique. IV”, Publ. Math. IHES, 1967, no. 32 | MR