Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1970_4_4_a5, author = {M. Kh. Gizatullin}, title = {On affine surfaces that can be completed by a nonsingular rational}, journal = {Izvestiya. Mathematics }, pages = {787--810}, publisher = {mathdoc}, volume = {4}, number = {4}, year = {1970}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_4_a5/} }
M. Kh. Gizatullin. On affine surfaces that can be completed by a nonsingular rational. Izvestiya. Mathematics , Tome 4 (1970) no. 4, pp. 787-810. http://geodesic.mathdoc.fr/item/IM2_1970_4_4_a5/
[1] Algebraicheskie poverkhnosti, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 75, 1965 | MR | Zbl
[2] Mamford D., Lektsii o krivykh na algebraicheskoi poverkhnosti, Mir, M., 1968
[3] Shafarevich I. R., Lectures on minimal models and birational transformations of two dimensional shemes, Tata Institute of Fundamental Research, Bombay, 1966 | MR
[4] Mumford D., Geometric Invariant Theory, Springer, Berlin, 1965 | MR | Zbl
[5] Picard E., Simart G., Théorie des fonctions algébriques de deux variables indépendantes, v. II, Paris, 1906
[6] Akizuki Y., “Theorems of Bertini on linear systems”, J. Math. Soc. Japan, 3:1 (1951), 170–180 | MR | Zbl
[7] Grothendieck A., “Elements de geometric algebrique. IV”, Publ. Math. IHES, 1967, no. 32 | MR