On some classes of infinitely divisible laws
Izvestiya. Mathematics , Tome 4 (1970) no. 4, pp. 931-952

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper establishes sufficient conditions under which a probability distribution belongs to the class $I_0$ of Ju. V. Linnik. These conditions are of qualitatively new type and imply, in particular, that an arbitrary perfect set on the real line, with the origin excluded, occurs as the Poisson spectrum of a law from the class $I_0$. It is furthermore shown that in the class of all infinitely divisible laws, the laws from $I_0$ form an everywhere dense set relative to the Lévy metric.
@article{IM2_1970_4_4_a10,
     author = {I. V. Ostrovskii},
     title = {On some classes of infinitely divisible laws},
     journal = {Izvestiya. Mathematics },
     pages = {931--952},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_4_a10/}
}
TY  - JOUR
AU  - I. V. Ostrovskii
TI  - On some classes of infinitely divisible laws
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 931
EP  - 952
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_4_a10/
LA  - en
ID  - IM2_1970_4_4_a10
ER  - 
%0 Journal Article
%A I. V. Ostrovskii
%T On some classes of infinitely divisible laws
%J Izvestiya. Mathematics 
%D 1970
%P 931-952
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_4_a10/
%G en
%F IM2_1970_4_4_a10
I. V. Ostrovskii. On some classes of infinitely divisible laws. Izvestiya. Mathematics , Tome 4 (1970) no. 4, pp. 931-952. http://geodesic.mathdoc.fr/item/IM2_1970_4_4_a10/