Induced rings and the reduction of fields of Abelian modular functions
Izvestiya. Mathematics , Tome 4 (1970) no. 3, pp. 536-550.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the present paper is that a ring obtained by reduction of Abelian modular functions is a ring of functions on a $p$-adic symplectic group over a perfect field $k$ of characteristic $p$, and the ring is induced by a homomorphism of a parabolic subgroup on $\operatorname{Aut}k$.
@article{IM2_1970_4_3_a4,
     author = {I. I. Pyatetskii-Shapiro},
     title = {Induced rings and the reduction of fields of {Abelian} modular functions},
     journal = {Izvestiya. Mathematics },
     pages = {536--550},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a4/}
}
TY  - JOUR
AU  - I. I. Pyatetskii-Shapiro
TI  - Induced rings and the reduction of fields of Abelian modular functions
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 536
EP  - 550
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a4/
LA  - en
ID  - IM2_1970_4_3_a4
ER  - 
%0 Journal Article
%A I. I. Pyatetskii-Shapiro
%T Induced rings and the reduction of fields of Abelian modular functions
%J Izvestiya. Mathematics 
%D 1970
%P 536-550
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a4/
%G en
%F IM2_1970_4_3_a4
I. I. Pyatetskii-Shapiro. Induced rings and the reduction of fields of Abelian modular functions. Izvestiya. Mathematics , Tome 4 (1970) no. 3, pp. 536-550. http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a4/

[1] Eicher M., “Quaternäre quadratische Formen und die Riemannsche Vermutung für die Kongruenzzetafunktion”, Arch. Math., 5 (1954), 355–366 | DOI | MR

[2] Shimura G., “On modular correspondences for $\operatorname{Sp}(N,Z)$ and their congruence relations”, Proc. Nat. Acad. Sci., 49:6 (1963), 824–828 | DOI | MR | Zbl

[3] Igusa J. I., “On the graded ring of theta-constants”, Amer. J. Math., 86:1 (1964), 219–245 | DOI | MR

[4] Baily W. L., “Classical theory of $\theta$-functions”, Proc. Sym. Pure Math., IX (1966), 306–312 | MR

[5] Igusa J. I., “On the algebraic theory of elliptic modular functions”, J. Math. Soc. Japan, 20:1–2 (1968), 96–106 | MR | Zbl

[6] Ihara Y., On congruence monodromy problems, v. 1, Lecture notes, 1, Tokyo, 1968 | MR | Zbl

[7] Pyatetskii-Shapiro I. I., Shafarevich I. R., “Teoriya Galua transtsendentnykh rasshirenii i uniformizatsiya”, Izv. AN SSSR. Ser. matem., 30 (1966), 671–704

[8] Pyatetskii-Shapiro I. I., “O reduktsii po prostomu modulyu polei modulyarnykh funktsii”, Izv. AN SSSR. Ser. matem., 32 (1968), 1264–1274

[9] Pyatetskii-Shapiro I. I., “Indutsirovannye koltsa i reduktsiya polei avtomorfnykh funktsii”, Funktsionalnyi analiz, 4:1 (1970), 94 | MR | Zbl

[10] Kirshtein B. X., Pyatetskii-Shapiro I. I., “Invariantnye podkoltsa indutsirovannykh kolets”, Izv. AN SSSR. Seriya matem., 34 (1970), 83–89

[11] Mumford D., Geometric Invariant Theory, Springer, Berlin, Heidelberg, New York, 1965 | MR | Zbl

[12] Pyatetskii-Shapiro I. I., Avtomorfnye funktsii i geometriya klassicheskikh oblastei, Fizmatgiz, M., L., 1961

[13] Algebraic Number Theory, Acad. Press, London, 1967; Algebraicheskaya teoriya chisel, Mir, M., 1969 | MR