On the classification of simple Lie algebras over a field of nonzero characteristic
Izvestiya. Mathematics , Tome 4 (1970) no. 2, pp. 391-413.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the question of the classification of simple finite-dimensional Lie algebras over an algebraically closed field $K$ of characteristic $p>3$. It is well known that there exist examples of filtrations for which an associative graded Lie algebra $G=\bigoplus\limits_{i\in\mathbf Z}G_i$ has the following properties: a) transitivity; b) $G_0$ is the direct sum of its center and some Lie algebras of the “classical type”, c) the representation of $G_0$ on $G_{-1}$ is irreducible and $p$-represented. The basic result of this paper is the classification of finite-dimensional graded Lie algebras over a field $K$ that satisfy conditions a)–c).
@article{IM2_1970_4_2_a7,
     author = {V. G. Kac},
     title = {On the classification of simple {Lie} algebras over a field of nonzero characteristic},
     journal = {Izvestiya. Mathematics },
     pages = {391--413},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a7/}
}
TY  - JOUR
AU  - V. G. Kac
TI  - On the classification of simple Lie algebras over a field of nonzero characteristic
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 391
EP  - 413
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a7/
LA  - en
ID  - IM2_1970_4_2_a7
ER  - 
%0 Journal Article
%A V. G. Kac
%T On the classification of simple Lie algebras over a field of nonzero characteristic
%J Izvestiya. Mathematics 
%D 1970
%P 391-413
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a7/
%G en
%F IM2_1970_4_2_a7
V. G. Kac. On the classification of simple Lie algebras over a field of nonzero characteristic. Izvestiya. Mathematics , Tome 4 (1970) no. 2, pp. 391-413. http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a7/

[1] Veisfeiler B. Yu., “Beskonechnomernye filtrovannye algebry Li i ikh svyaz s graduirovannymi algebrami Li”, Funkts. analiz., 2:1 (1968), 94–95 | MR | Zbl

[2] Dzhekobson N., Algebry Li, M., 1964

[3] Kats V. G., “Prostye neprivodimye graduirovannye algebry Li konechnogo rosta”, Izv. AN SSSR. Ser. matem., 32 (1968), 1323–1367 | Zbl

[4] Kats V. G., “Nekotorye svoistva kontragredientnykh algebr Li”, Trudy MIEM, 1970, no. 5, 48–59

[5] Kostrikin A. I., Shafarevich I. R., “Graduirovannye algebry Li konechnoi kharakteristiki”, Izv. AN SSSR. Ser. matem., 33 (1969), 251–322 | MR | Zbl

[6] Curtis C., “Representation of Lie algebras of classical type with application to linear groups”, J. Math. and mech., 9 (1960), 307–326 | MR | Zbl

[7] Seligman G. B., “Some results in Lie $p$-algebras”, Bull. Amer. Math. Soc., 73:4 (1967), 528–530 | DOI | MR | Zbl