On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $\mathbf Q(x_1,\dots,x_n)$
Izvestiya. Mathematics , Tome 4 (1970) no. 2, pp. 371-380

Voir la notice de l'article provenant de la source Math-Net.Ru

The subfield $L$ of the field $K=\mathbf Q(x_1,\dots,x_n)$ consisting of invariant functions relative to a cyclic permutation of the indeterminates is interpreted as the field of rational functions on a certain torus defined over $\mathbf Q$. On this basis, a necessary condition is derived for pure transcendence of $L$ over $\mathbf Q$ from which are obtained a number of counterexamples. A list is also given of fields $L$ which are purely transcendental over $\mathbf Q$.
@article{IM2_1970_4_2_a5,
     author = {V. E. Voskresenskii},
     title = {On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $\mathbf Q(x_1,\dots,x_n)$},
     journal = {Izvestiya. Mathematics },
     pages = {371--380},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a5/}
}
TY  - JOUR
AU  - V. E. Voskresenskii
TI  - On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $\mathbf Q(x_1,\dots,x_n)$
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 371
EP  - 380
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a5/
LA  - en
ID  - IM2_1970_4_2_a5
ER  - 
%0 Journal Article
%A V. E. Voskresenskii
%T On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $\mathbf Q(x_1,\dots,x_n)$
%J Izvestiya. Mathematics 
%D 1970
%P 371-380
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a5/
%G en
%F IM2_1970_4_2_a5
V. E. Voskresenskii. On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $\mathbf Q(x_1,\dots,x_n)$. Izvestiya. Mathematics , Tome 4 (1970) no. 2, pp. 371-380. http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a5/