On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $\mathbf Q(x_1,\dots,x_n)$
Izvestiya. Mathematics , Tome 4 (1970) no. 2, pp. 371-380
Voir la notice de l'article provenant de la source Math-Net.Ru
The subfield $L$ of the field $K=\mathbf Q(x_1,\dots,x_n)$ consisting of invariant functions relative to a cyclic permutation of the indeterminates is interpreted as the field of rational functions on a certain torus defined over $\mathbf Q$. On this basis, a necessary condition is derived for pure transcendence of $L$ over $\mathbf Q$ from which are obtained a number of counterexamples. A list is also given of fields $L$ which are purely transcendental over $\mathbf Q$.
@article{IM2_1970_4_2_a5,
author = {V. E. Voskresenskii},
title = {On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $\mathbf Q(x_1,\dots,x_n)$},
journal = {Izvestiya. Mathematics },
pages = {371--380},
publisher = {mathdoc},
volume = {4},
number = {2},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a5/}
}
TY - JOUR AU - V. E. Voskresenskii TI - On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $\mathbf Q(x_1,\dots,x_n)$ JO - Izvestiya. Mathematics PY - 1970 SP - 371 EP - 380 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a5/ LA - en ID - IM2_1970_4_2_a5 ER -
%0 Journal Article %A V. E. Voskresenskii %T On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $\mathbf Q(x_1,\dots,x_n)$ %J Izvestiya. Mathematics %D 1970 %P 371-380 %V 4 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a5/ %G en %F IM2_1970_4_2_a5
V. E. Voskresenskii. On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $\mathbf Q(x_1,\dots,x_n)$. Izvestiya. Mathematics , Tome 4 (1970) no. 2, pp. 371-380. http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a5/