On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $\mathbf Q(x_1,\dots,x_n)$
Izvestiya. Mathematics , Tome 4 (1970) no. 2, pp. 371-380.

Voir la notice de l'article provenant de la source Math-Net.Ru

The subfield $L$ of the field $K=\mathbf Q(x_1,\dots,x_n)$ consisting of invariant functions relative to a cyclic permutation of the indeterminates is interpreted as the field of rational functions on a certain torus defined over $\mathbf Q$. On this basis, a necessary condition is derived for pure transcendence of $L$ over $\mathbf Q$ from which are obtained a number of counterexamples. A list is also given of fields $L$ which are purely transcendental over $\mathbf Q$.
@article{IM2_1970_4_2_a5,
     author = {V. E. Voskresenskii},
     title = {On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $\mathbf Q(x_1,\dots,x_n)$},
     journal = {Izvestiya. Mathematics },
     pages = {371--380},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a5/}
}
TY  - JOUR
AU  - V. E. Voskresenskii
TI  - On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $\mathbf Q(x_1,\dots,x_n)$
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 371
EP  - 380
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a5/
LA  - en
ID  - IM2_1970_4_2_a5
ER  - 
%0 Journal Article
%A V. E. Voskresenskii
%T On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $\mathbf Q(x_1,\dots,x_n)$
%J Izvestiya. Mathematics 
%D 1970
%P 371-380
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a5/
%G en
%F IM2_1970_4_2_a5
V. E. Voskresenskii. On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $\mathbf Q(x_1,\dots,x_n)$. Izvestiya. Mathematics , Tome 4 (1970) no. 2, pp. 371-380. http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a5/

[1] Masuda K., “On a problem of Chevalley”, Nagoya Math. J., 8 (1955), 59–63 | MR | Zbl

[2] Masuda K., “Application of the theory of the group of classes of projective modules to the existence problem of independent parameters of invariant”, J. Math. Soc. Japan, 20:1–2 (1968), 223–232 | MR | Zbl

[3] Voskresenskii V. E., “O biratsionalnoi ekvivalentnosti lineinykh algebraicheskikh grupp”, Dokl. AN SSSR, 188:5 (1969), 978–981 | MR | Zbl

[4] Voskresenskii V. E., “Biratsionalnye svoistva lineinykh algebraicheskikh grupp”, Izv. AN SSSR. Ser. matem., 34 (1970), 1–19 | MR | Zbl

[5] Faddeev D. K., Sominskii I. S., Sbornik zadach po vysshei algebre, izd. 3, Gostekhizdat, M., 1952 | MR

[6] Ono T., “On the Tamagawa number of algebraic tori”, Ann. Math., 78 (1963), 47–73 | DOI | MR | Zbl

[7] Voskresenskii V. E., “O dvumernykh algebraicheskikh torakh. II”, Izv. AN SSSR. Ser. matem., 31 (1967), 711–716 | MR | Zbl

[8] Roiter A. V., “O predstavleniyakh tsiklicheskoi gruppy chetvertogo poryadka tselochislennymi matritsami”, Vestn. LGU, 19 (1960), 65–74 | MR | Zbl