Algebraic construction and properties of hermitian analogs of $K$-theory over rings with involution from the viewpoint of hamiltonian formalism. applications to differential topology and the theory of characteristic classes.~I
Izvestiya. Mathematics , Tome 4 (1970) no. 2, pp. 257-292.

Voir la notice de l'article provenant de la source Math-Net.Ru

The complicated and intricate algebraic material in smooth topology (the theory of surgery) does not fit into the already existing concepts of stable algebra. It turns out that the systematization of this material is most naturally carried through from the point of view of an algebraic version of the hamiltonian formalism over rings with involution. The present article is devoted to this task. The first part contains a development of the algebraic concepts.
@article{IM2_1970_4_2_a0,
     author = {S. P. Novikov},
     title = {Algebraic construction and properties of hermitian analogs of $K$-theory over rings with involution from the viewpoint of hamiltonian formalism. applications to differential topology and the theory of characteristic {classes.~I}},
     journal = {Izvestiya. Mathematics },
     pages = {257--292},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a0/}
}
TY  - JOUR
AU  - S. P. Novikov
TI  - Algebraic construction and properties of hermitian analogs of $K$-theory over rings with involution from the viewpoint of hamiltonian formalism. applications to differential topology and the theory of characteristic classes.~I
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 257
EP  - 292
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a0/
LA  - en
ID  - IM2_1970_4_2_a0
ER  - 
%0 Journal Article
%A S. P. Novikov
%T Algebraic construction and properties of hermitian analogs of $K$-theory over rings with involution from the viewpoint of hamiltonian formalism. applications to differential topology and the theory of characteristic classes.~I
%J Izvestiya. Mathematics 
%D 1970
%P 257-292
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a0/
%G en
%F IM2_1970_4_2_a0
S. P. Novikov. Algebraic construction and properties of hermitian analogs of $K$-theory over rings with involution from the viewpoint of hamiltonian formalism. applications to differential topology and the theory of characteristic classes.~I. Izvestiya. Mathematics , Tome 4 (1970) no. 2, pp. 257-292. http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a0/

[1] Atiyah M. F., “$K$-theory and reality”, Quart. J. Math., 17 (1966), 367–386 | DOI | MR | Zbl

[2] Arnold V. I., “O kharakteristicheskom klasse, vkhodyaschem v usloviya kvantovaniya”, Funkts. analiz, 1:1 (1967), 1–44 | MR

[3] Bass H., Keller A., Swan R. G., “The Whitehead groups of polinomi'al extensions”, Inst. des Hautes Et. Sci., 22 (1964), 61–79 | DOI | MR

[4] Browder W., “Diffeomorphism of simply connected manifolds”, Trans. Amer. Math. Soc., 128 (1967), 155–163 | DOI | MR | Zbl

[5] Browder W., “On the manifolds with $\pi_1=Z$”, Bull. Amer. Math. Soc., 72:2 (1966), 238–243 | DOI | MR

[6] Gelfand I. M., Mischenko A. S., “Kvadratichnye formy nad kommutativnymi gruppovymi koltsami i $K$-teoriya”, Funkts. analiz, 3:4 (1969), 28–33 | MR

[7] Hsiang W., Shaneson J., Fake tori, annulus conjecture and a conjectures of Kirby, preprint, Yale Univ., 1969

[8] Golo V. L., “Ob odnom invariante otkrytykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 31 (1967), 1091–1104 | MR | Zbl

[9] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965

[10] Milnor J., Notes on the algebraic $K$-theory, preprint, Mass. Techn. Inst., 1968, 1–92

[11] Novikov S. P., “Gomotopicheski ekvivalentnye gladkie mnogoobraziya”, Izv. AN SSSR. Ser. matem., 28 (1964), 365–474

[12] Novikov S. P., “Ratsionalnye klassy Pontryagina. I. Gomotopicheskii tip i gomeomorfizm zamknutykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 29 (1965), 1373–1388 | Zbl

[13] Novikov S. P., “O mnogoobraziyakh so svobodnoi abelevoi fundamentalnoi gruppoi i ikh primeneniyakh (klassy Pontryagina, gladkosti, mnogomernye uzly)”, Izv. AN SSSR. Ser. matem., 30 (1966), 207–246 | Zbl

[14] Novikov S. P., “Pontrjagin classes, the fundamental group and some problems of stable algebra”, Memoirés Dedieés a George de Rham, Zechner Press, 1969, 147–155 | MR

[15] Rokhlin V. A., “Klassy Pontryagina–Khirtsebrukha korazmernosti 2”, Izv. AN SSSR. Ser. matem., 30 (1966), 705–718 | Zbl

[16] Shaneson J., “Wall's surgery obstructions for $G\times Z$ for suitable group $G$”, Bull. Amer. Math. Soc., 74:3 (1968), 467–471 | DOI | MR | Zbl

[17] Fuks D. B., “Kharakteristicheskie klassy Maslova–Arnolda”, Dokl. AN SSSR, 178:2 (1968), 303–306 | MR | Zbl

[18] Wall C. T. C., “Finitness conditions for $CW$-complexes”, Ann. Math., 81:1 (1965), 56–69 | DOI | MR

[19] Wall C. T. C., “Surgery of nonsimply connected manifolds”, Ann. Math., 82 (1966), 217–276 | DOI | MR

[20] Wall C. T. C., Surgery of compact manifolds, preprint, §§ 1–12, Liverpool Univ., 1968

[21] Wall C. T. C., On the homotopy tori and annulus conjecture, preprint, §§ 1–3, Liverpool Univ., 1969 | MR