Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1970_4_2_a0, author = {S. P. Novikov}, title = {Algebraic construction and properties of hermitian analogs of $K$-theory over rings with involution from the viewpoint of hamiltonian formalism. applications to differential topology and the theory of characteristic {classes.~I}}, journal = {Izvestiya. Mathematics }, pages = {257--292}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {1970}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a0/} }
TY - JOUR AU - S. P. Novikov TI - Algebraic construction and properties of hermitian analogs of $K$-theory over rings with involution from the viewpoint of hamiltonian formalism. applications to differential topology and the theory of characteristic classes.~I JO - Izvestiya. Mathematics PY - 1970 SP - 257 EP - 292 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a0/ LA - en ID - IM2_1970_4_2_a0 ER -
%0 Journal Article %A S. P. Novikov %T Algebraic construction and properties of hermitian analogs of $K$-theory over rings with involution from the viewpoint of hamiltonian formalism. applications to differential topology and the theory of characteristic classes.~I %J Izvestiya. Mathematics %D 1970 %P 257-292 %V 4 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a0/ %G en %F IM2_1970_4_2_a0
S. P. Novikov. Algebraic construction and properties of hermitian analogs of $K$-theory over rings with involution from the viewpoint of hamiltonian formalism. applications to differential topology and the theory of characteristic classes.~I. Izvestiya. Mathematics , Tome 4 (1970) no. 2, pp. 257-292. http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a0/
[1] Atiyah M. F., “$K$-theory and reality”, Quart. J. Math., 17 (1966), 367–386 | DOI | MR | Zbl
[2] Arnold V. I., “O kharakteristicheskom klasse, vkhodyaschem v usloviya kvantovaniya”, Funkts. analiz, 1:1 (1967), 1–44 | MR
[3] Bass H., Keller A., Swan R. G., “The Whitehead groups of polinomi'al extensions”, Inst. des Hautes Et. Sci., 22 (1964), 61–79 | DOI | MR
[4] Browder W., “Diffeomorphism of simply connected manifolds”, Trans. Amer. Math. Soc., 128 (1967), 155–163 | DOI | MR | Zbl
[5] Browder W., “On the manifolds with $\pi_1=Z$”, Bull. Amer. Math. Soc., 72:2 (1966), 238–243 | DOI | MR
[6] Gelfand I. M., Mischenko A. S., “Kvadratichnye formy nad kommutativnymi gruppovymi koltsami i $K$-teoriya”, Funkts. analiz, 3:4 (1969), 28–33 | MR
[7] Hsiang W., Shaneson J., Fake tori, annulus conjecture and a conjectures of Kirby, preprint, Yale Univ., 1969
[8] Golo V. L., “Ob odnom invariante otkrytykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 31 (1967), 1091–1104 | MR | Zbl
[9] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965
[10] Milnor J., Notes on the algebraic $K$-theory, preprint, Mass. Techn. Inst., 1968, 1–92
[11] Novikov S. P., “Gomotopicheski ekvivalentnye gladkie mnogoobraziya”, Izv. AN SSSR. Ser. matem., 28 (1964), 365–474
[12] Novikov S. P., “Ratsionalnye klassy Pontryagina. I. Gomotopicheskii tip i gomeomorfizm zamknutykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 29 (1965), 1373–1388 | Zbl
[13] Novikov S. P., “O mnogoobraziyakh so svobodnoi abelevoi fundamentalnoi gruppoi i ikh primeneniyakh (klassy Pontryagina, gladkosti, mnogomernye uzly)”, Izv. AN SSSR. Ser. matem., 30 (1966), 207–246 | Zbl
[14] Novikov S. P., “Pontrjagin classes, the fundamental group and some problems of stable algebra”, Memoirés Dedieés a George de Rham, Zechner Press, 1969, 147–155 | MR
[15] Rokhlin V. A., “Klassy Pontryagina–Khirtsebrukha korazmernosti 2”, Izv. AN SSSR. Ser. matem., 30 (1966), 705–718 | Zbl
[16] Shaneson J., “Wall's surgery obstructions for $G\times Z$ for suitable group $G$”, Bull. Amer. Math. Soc., 74:3 (1968), 467–471 | DOI | MR | Zbl
[17] Fuks D. B., “Kharakteristicheskie klassy Maslova–Arnolda”, Dokl. AN SSSR, 178:2 (1968), 303–306 | MR | Zbl
[18] Wall C. T. C., “Finitness conditions for $CW$-complexes”, Ann. Math., 81:1 (1965), 56–69 | DOI | MR
[19] Wall C. T. C., “Surgery of nonsimply connected manifolds”, Ann. Math., 82 (1966), 217–276 | DOI | MR
[20] Wall C. T. C., Surgery of compact manifolds, preprint, §§ 1–12, Liverpool Univ., 1968
[21] Wall C. T. C., On the homotopy tori and annulus conjecture, preprint, §§ 1–3, Liverpool Univ., 1969 | MR