Extensions and generalized resolvents of a symmetric operator which is not densely defined
Izvestiya. Mathematics , Tome 4 (1970) no. 1, pp. 179-208

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider extensions of a closed symmetric operator $A$ whose domain is, in general, not dense in the given Hilbert space $H$. In particular, we study self-adjoint extensions outside $H$ and the one-parameter families of operators $B_\lambda\supset A$ ($\operatorname{Im}\lambda\ne0$) generated by them in $H$ which are dissipative for $\operatorname{Im}\lambda0$. The set of all generalized resolvents of the operator $A$ is characterized.
@article{IM2_1970_4_1_a9,
     author = {A. V. Strauss},
     title = {Extensions and generalized resolvents of a symmetric operator which is not densely defined},
     journal = {Izvestiya. Mathematics },
     pages = {179--208},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a9/}
}
TY  - JOUR
AU  - A. V. Strauss
TI  - Extensions and generalized resolvents of a symmetric operator which is not densely defined
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 179
EP  - 208
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a9/
LA  - en
ID  - IM2_1970_4_1_a9
ER  - 
%0 Journal Article
%A A. V. Strauss
%T Extensions and generalized resolvents of a symmetric operator which is not densely defined
%J Izvestiya. Mathematics 
%D 1970
%P 179-208
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a9/
%G en
%F IM2_1970_4_1_a9
A. V. Strauss. Extensions and generalized resolvents of a symmetric operator which is not densely defined. Izvestiya. Mathematics , Tome 4 (1970) no. 1, pp. 179-208. http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a9/