Eigenvector bases of completely nonunitary contractions and the characteristic function
Izvestiya. Mathematics , Tome 4 (1970) no. 1, pp. 91-134
Voir la notice de l'article provenant de la source Math-Net.Ru
We study Bari and Riesz bases $({}^1)$ of eigenspaces of contraction operators which are close to unitary. Subject to certain assumptions about the operator, we partition its spectrum into so-called Carleson series, in terms of which we establish new criteria for the basicity of the operator. Most completely studied are contractions with finite-dimensional deficiency operators $I-T^*T$ and $I-TT^*$. As examples we consider classical bases of exponential functions in various function spaces.
@article{IM2_1970_4_1_a5,
author = {N. K. Nikol'skii and B. S. Pavlov},
title = {Eigenvector bases of completely nonunitary contractions and the characteristic function},
journal = {Izvestiya. Mathematics },
pages = {91--134},
publisher = {mathdoc},
volume = {4},
number = {1},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a5/}
}
TY - JOUR AU - N. K. Nikol'skii AU - B. S. Pavlov TI - Eigenvector bases of completely nonunitary contractions and the characteristic function JO - Izvestiya. Mathematics PY - 1970 SP - 91 EP - 134 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a5/ LA - en ID - IM2_1970_4_1_a5 ER -
N. K. Nikol'skii; B. S. Pavlov. Eigenvector bases of completely nonunitary contractions and the characteristic function. Izvestiya. Mathematics , Tome 4 (1970) no. 1, pp. 91-134. http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a5/