Eigenvector bases of completely nonunitary contractions and the characteristic function
Izvestiya. Mathematics , Tome 4 (1970) no. 1, pp. 91-134

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Bari and Riesz bases $({}^1)$ of eigenspaces of contraction operators which are close to unitary. Subject to certain assumptions about the operator, we partition its spectrum into so-called Carleson series, in terms of which we establish new criteria for the basicity of the operator. Most completely studied are contractions with finite-dimensional deficiency operators $I-T^*T$ and $I-TT^*$. As examples we consider classical bases of exponential functions in various function spaces.
@article{IM2_1970_4_1_a5,
     author = {N. K. Nikol'skii and B. S. Pavlov},
     title = {Eigenvector bases of completely nonunitary contractions and the characteristic function},
     journal = {Izvestiya. Mathematics },
     pages = {91--134},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a5/}
}
TY  - JOUR
AU  - N. K. Nikol'skii
AU  - B. S. Pavlov
TI  - Eigenvector bases of completely nonunitary contractions and the characteristic function
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 91
EP  - 134
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a5/
LA  - en
ID  - IM2_1970_4_1_a5
ER  - 
%0 Journal Article
%A N. K. Nikol'skii
%A B. S. Pavlov
%T Eigenvector bases of completely nonunitary contractions and the characteristic function
%J Izvestiya. Mathematics 
%D 1970
%P 91-134
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a5/
%G en
%F IM2_1970_4_1_a5
N. K. Nikol'skii; B. S. Pavlov. Eigenvector bases of completely nonunitary contractions and the characteristic function. Izvestiya. Mathematics , Tome 4 (1970) no. 1, pp. 91-134. http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a5/