Eigenvector bases of completely nonunitary contractions and the characteristic function
Izvestiya. Mathematics , Tome 4 (1970) no. 1, pp. 91-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Bari and Riesz bases $({}^1)$ of eigenspaces of contraction operators which are close to unitary. Subject to certain assumptions about the operator, we partition its spectrum into so-called Carleson series, in terms of which we establish new criteria for the basicity of the operator. Most completely studied are contractions with finite-dimensional deficiency operators $I-T^*T$ and $I-TT^*$. As examples we consider classical bases of exponential functions in various function spaces.
@article{IM2_1970_4_1_a5,
     author = {N. K. Nikol'skii and B. S. Pavlov},
     title = {Eigenvector bases of completely nonunitary contractions and the characteristic function},
     journal = {Izvestiya. Mathematics },
     pages = {91--134},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a5/}
}
TY  - JOUR
AU  - N. K. Nikol'skii
AU  - B. S. Pavlov
TI  - Eigenvector bases of completely nonunitary contractions and the characteristic function
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 91
EP  - 134
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a5/
LA  - en
ID  - IM2_1970_4_1_a5
ER  - 
%0 Journal Article
%A N. K. Nikol'skii
%A B. S. Pavlov
%T Eigenvector bases of completely nonunitary contractions and the characteristic function
%J Izvestiya. Mathematics 
%D 1970
%P 91-134
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a5/
%G en
%F IM2_1970_4_1_a5
N. K. Nikol'skii; B. S. Pavlov. Eigenvector bases of completely nonunitary contractions and the characteristic function. Izvestiya. Mathematics , Tome 4 (1970) no. 1, pp. 91-134. http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a5/

[1] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[2] Nikolskii N. K., Pavlov B. S., “Razlozheniya po sobstvennym vektoram neunitarnykh operatorov i kharakteristicheskaya funktsiya”, Zapiski seminarov LOMI, 11, Nauka, L., 1968, 150–203 | MR

[3] Katsnelson V. E., “Ob usloviyakh bazisnosti sistemy kornevykh vektorov nekotorykh klassov operatorov”, Funktsion. analiz i ego prilozheniya, 1:2 (1967), 39–51 | MR

[4] Nikolskii N. K., Pavlov B. S., “Bazisy iz sobstvennykh vektorov vpolne neunitarnykh szhatii”, Dokl. AN SSSR, 184:4 (1969), 778–781 | MR

[5] Nagy B. Sz., Foias C., Analyse harmonique des opérateurs de l'espace de Hilbert, Budapest, 1967

[6] Helson H., Lectures on invariant subspaces, New York, London, 1964 | MR | Zbl

[7] J. von Neumann, “Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes”, Math. Nachrichten, 4 (1951), 258–281 | MR | Zbl

[8] Grinblyum M. M., “O predstavlenii prostranstva tipa $B$ v vide pryamoi summy podprostranstv”, Dokl. AN SSSR, 70:5 (1950), 749–752 | MR

[9] Riss F., Nad B. S., Lektsii po funktsionalnomu analizu, IL, M., 1953

[10] Gofman K., Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1963

[11] Vinogradov S. A., Interpolyatsionnye zadachi dlya analiticheskikh funktsii, nepreryvnykh v zamknutom kruge, i dlya funktsii s posledovatelnostyu koeffitsientov iz $l^p$, Dissertatsiya, LGU, 1968

[12] Sarason D., “Generalized interpolation in $H^\infty$”, Trans. Amer. Math. Soc., 127:2 (1967), 179–203 | DOI | MR | Zbl

[13] Katsnelson V. E., O skhodimosti i summiruemosti ryadov po kornevym vektoram nekotorykh klassov nesamosopryazhennykh operatorov, Dissertatsiya, KhGU, 1967

[14] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[15] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[16] Viner N., Peli R., Preobrazovanie Fure v kompleksnoi oblasti, Nauka, M., 1964 | MR

[17] Gurarii V. I., Matsaev V. I., “Lakunarnye stepennye posledovatelnosti v prostranstvakh $C$ i $L_p$”, Izv. AN SSSR. Ser. matem., 30 (1966), 3–14 | MR | Zbl