Hilbert--Schmidt operators and the absolute convergence of fourier series
Izvestiya. Mathematics , Tome 4 (1970) no. 1, pp. 215-223.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions are proved for integral operators to belong to ideals of the ring of operators; applications of the results obtained to the question of absolute convergence of Fourier series are given.
@article{IM2_1970_4_1_a11,
     author = {S. L. Blyumin and B. D. Kotlyar},
     title = {Hilbert--Schmidt operators and the absolute convergence of fourier series},
     journal = {Izvestiya. Mathematics },
     pages = {215--223},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a11/}
}
TY  - JOUR
AU  - S. L. Blyumin
AU  - B. D. Kotlyar
TI  - Hilbert--Schmidt operators and the absolute convergence of fourier series
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 215
EP  - 223
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a11/
LA  - en
ID  - IM2_1970_4_1_a11
ER  - 
%0 Journal Article
%A S. L. Blyumin
%A B. D. Kotlyar
%T Hilbert--Schmidt operators and the absolute convergence of fourier series
%J Izvestiya. Mathematics 
%D 1970
%P 215-223
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a11/
%G en
%F IM2_1970_4_1_a11
S. L. Blyumin; B. D. Kotlyar. Hilbert--Schmidt operators and the absolute convergence of fourier series. Izvestiya. Mathematics , Tome 4 (1970) no. 1, pp. 215-223. http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a11/

[1] Bernshtein S. N., “Ob absolyutnoi skhodimosti trigonometricheskikh ryadov”, Sobr. soch., t. 1, 217–223

[2] Vilenkin N. Ya., “Ob odnom klasse polnykh ortonormalnykh sistem”, Izv. AN SSSR. Ser. matem., 11 (1947), 363–400 | MR

[3] Gokhberg I. Ts., Kpein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[4] Gokhberg I. Ts., Markus A. S., “Nekotorye sootnosheniya mezhdu sobstvennymi chislami i matrichnymi elementami lineinykh operatorov”, Matem. sb., 64(106) (1964), 481–496 | MR | Zbl

[5] Zigmund A., Trigonometricheskie ryady, t. 1, Mir, M., 1965 | MR

[6] Zigmund A., Trigonometricheskie ryady, t. 2, Mir, M., 1965 | MR

[7] Lorentz G. G., “Fourier-Koeffizienten und Functionenklassen”, Math. Zeit, 51:2 (1948), 135–149 | DOI | MR | Zbl

[8] Szasz O., “Über der Konvergenzexponent der Fourierschen Reihen”, München Sitzungsber., 1922, 135–150 | Zbl

[9] Stinespring W. F., “A sufficient condition for an integral operator to have a trace”, J. für die reine und angew. Math., 200:3–4 (1958), 200–207 | MR | Zbl

[10] Fine N. J., “On the Walsh functions”, Trans. Amer. math. Soc., 65:3 (1949), 372–414 | DOI | MR | Zbl

[11] Fredholm I., “Sur une classe d'equations fonctionnelles”, Acta Math., 27 (1903), 365–390 | DOI | MR | Zbl

[12] Schatten R., A theory of cross-spaces, Princeton, N.J., 1950 | MR