Harmonic analysis of functions on semisimple Lie groups.~II
Izvestiya. Mathematics , Tome 3 (1969) no. 6, pp. 1183-1217

Voir la notice de l'article provenant de la source Math-Net.Ru

A theory of harmonic analysis is developed for the class of functions (fundamental and generalized) with compact support on an arbitrary semisimple complex connected Lie group. Duality theorems are proved for the linear topological spaces of finite functions most often encountered in analysis (infinitely differentiable finite functions, finite functions in $L^2$ , and finite generalized functions). All results are analogs of the standard theorems of Paley–Wiener type in harmonic analysis on the line.
@article{IM2_1969_3_6_a2,
     author = {D. P. Zhelobenko},
     title = {Harmonic analysis of functions on semisimple {Lie} {groups.~II}},
     journal = {Izvestiya. Mathematics },
     pages = {1183--1217},
     publisher = {mathdoc},
     volume = {3},
     number = {6},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a2/}
}
TY  - JOUR
AU  - D. P. Zhelobenko
TI  - Harmonic analysis of functions on semisimple Lie groups.~II
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 1183
EP  - 1217
VL  - 3
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a2/
LA  - en
ID  - IM2_1969_3_6_a2
ER  - 
%0 Journal Article
%A D. P. Zhelobenko
%T Harmonic analysis of functions on semisimple Lie groups.~II
%J Izvestiya. Mathematics 
%D 1969
%P 1183-1217
%V 3
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a2/
%G en
%F IM2_1969_3_6_a2
D. P. Zhelobenko. Harmonic analysis of functions on semisimple Lie groups.~II. Izvestiya. Mathematics , Tome 3 (1969) no. 6, pp. 1183-1217. http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a2/