Analog of Torelli's theorem for two-dimensional bundles over algebraic curves of
Izvestiya. Mathematics , Tome 3 (1969) no. 5, pp. 1081-1101.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, the analog of Torelli's theorem is proved for two-dimensional vector bundles with fixed determinant of odd degree over an arbitrary algebraic curve.
@article{IM2_1969_3_5_a8,
     author = {A. N. Tyurin},
     title = {Analog of {Torelli's} theorem for two-dimensional bundles over algebraic curves of},
     journal = {Izvestiya. Mathematics },
     pages = {1081--1101},
     publisher = {mathdoc},
     volume = {3},
     number = {5},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a8/}
}
TY  - JOUR
AU  - A. N. Tyurin
TI  - Analog of Torelli's theorem for two-dimensional bundles over algebraic curves of
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 1081
EP  - 1101
VL  - 3
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a8/
LA  - en
ID  - IM2_1969_3_5_a8
ER  - 
%0 Journal Article
%A A. N. Tyurin
%T Analog of Torelli's theorem for two-dimensional bundles over algebraic curves of
%J Izvestiya. Mathematics 
%D 1969
%P 1081-1101
%V 3
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a8/
%G en
%F IM2_1969_3_5_a8
A. N. Tyurin. Analog of Torelli's theorem for two-dimensional bundles over algebraic curves of. Izvestiya. Mathematics , Tome 3 (1969) no. 5, pp. 1081-1101. http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a8/

[1] Atiyah M. F., “Complex fibre bundles and ruled surfaces”, Proc. London Math. Soc. (3), 5 (1955), 407–434 | DOI | MR | Zbl

[2] Atiyah M. F., “Complex analytic connection in fibre bundles”, Trans. Amer. Math. Soc., 85 (1957), 181–207 | DOI | MR | Zbl

[3] Kodaira K., “A theorem of completeness of characteristic sistems for analytic families of compact submanifolds of complex manifold”, Ann. Math., 72 (1962), 146 | DOI | MR

[4] Matsusaka T., “The criteria for algebraic equivalence and the torsion group”, Amer. J. Math., 79 (1957), 53–66 | DOI | MR | Zbl

[5] Mumford O. B., Geometric invariant theory, Berlin, Heidelberg, 1965

[6] Narasimhan M. S., Seshardi C. S., “Stable and unitary vector bundles on a compact Rimann surfaces”, Ann. Math., 82 (1965), 540–567 | DOI | MR | Zbl

[7] Newstead P. E., “Topological properties of some space of stable bundles”, Topology, 6 (1967), 241–262 | DOI | MR | Zbl

[8] Newstead P. E., “Stable bundles of rank 2 and odd degree over a curve of genus 2”, Topology, 7 (1968), 205–215 | DOI | MR | Zbl

[9] Tyurin A. E., “O klassifikatsii dvumernykh vektornykh rassloenii nad algebraicheskoi krivoi proizvolnogo roda”, Izv. AN SSSR. Ser. matem., 28:1 (1964), 21–52 | MR | Zbl

[10] Tyurin A. N., “Klassifikatsiya vektornykh rassloenii nad algebraicheskoi krivoi proizvolnogo roda”, Izv. AN SSSR. Ser. matem., 29:3 (1965), 657–699 | MR | Zbl

[11] Schwarzenberger R. L. E., “Vector bundles on algebraic surfaces”, Proc. London Math. Soc., 11:44 (1961), 15–32 | MR