Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1969_3_5_a8, author = {A. N. Tyurin}, title = {Analog of {Torelli's} theorem for two-dimensional bundles over algebraic curves of}, journal = {Izvestiya. Mathematics }, pages = {1081--1101}, publisher = {mathdoc}, volume = {3}, number = {5}, year = {1969}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a8/} }
A. N. Tyurin. Analog of Torelli's theorem for two-dimensional bundles over algebraic curves of. Izvestiya. Mathematics , Tome 3 (1969) no. 5, pp. 1081-1101. http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a8/
[1] Atiyah M. F., “Complex fibre bundles and ruled surfaces”, Proc. London Math. Soc. (3), 5 (1955), 407–434 | DOI | MR | Zbl
[2] Atiyah M. F., “Complex analytic connection in fibre bundles”, Trans. Amer. Math. Soc., 85 (1957), 181–207 | DOI | MR | Zbl
[3] Kodaira K., “A theorem of completeness of characteristic sistems for analytic families of compact submanifolds of complex manifold”, Ann. Math., 72 (1962), 146 | DOI | MR
[4] Matsusaka T., “The criteria for algebraic equivalence and the torsion group”, Amer. J. Math., 79 (1957), 53–66 | DOI | MR | Zbl
[5] Mumford O. B., Geometric invariant theory, Berlin, Heidelberg, 1965
[6] Narasimhan M. S., Seshardi C. S., “Stable and unitary vector bundles on a compact Rimann surfaces”, Ann. Math., 82 (1965), 540–567 | DOI | MR | Zbl
[7] Newstead P. E., “Topological properties of some space of stable bundles”, Topology, 6 (1967), 241–262 | DOI | MR | Zbl
[8] Newstead P. E., “Stable bundles of rank 2 and odd degree over a curve of genus 2”, Topology, 7 (1968), 205–215 | DOI | MR | Zbl
[9] Tyurin A. E., “O klassifikatsii dvumernykh vektornykh rassloenii nad algebraicheskoi krivoi proizvolnogo roda”, Izv. AN SSSR. Ser. matem., 28:1 (1964), 21–52 | MR | Zbl
[10] Tyurin A. N., “Klassifikatsiya vektornykh rassloenii nad algebraicheskoi krivoi proizvolnogo roda”, Izv. AN SSSR. Ser. matem., 29:3 (1965), 657–699 | MR | Zbl
[11] Schwarzenberger R. L. E., “Vector bundles on algebraic surfaces”, Proc. London Math. Soc., 11:44 (1961), 15–32 | MR