Ad\`eles and integral representations
Izvestiya. Mathematics , Tome 3 (1969) no. 5, pp. 1019-1026

Voir la notice de l'article provenant de la source Math-Net.Ru

We apply the technique of adèles to study integral representations belonging to the same genus. We study the stable structure of genera and prove that if $L$ is a representation of a semisimple $Z$-ring such that each direct summand occurs at least twice in the decomposition of $L$ over the field of rational numbers, and if $M$ and $N$ are representations from the genus of $L$, then $M\oplus L^n\simeq N\oplus L^n$ implies that $M\simeq N$. For representations of a semisimple $Z$-ring $\Lambda$ we give a bound for the number of representations in a genus; the bound depends only on the rational algebra $\widetilde\Lambda=\Lambda\otimes Q$ and on the exponent of the group $\Lambda'/\lambda$ , where $\Lambda'$ is a maximal overring of $\Lambda$.
@article{IM2_1969_3_5_a4,
     author = {Yu. A. Drozd},
     title = {Ad\`eles and integral representations},
     journal = {Izvestiya. Mathematics },
     pages = {1019--1026},
     publisher = {mathdoc},
     volume = {3},
     number = {5},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a4/}
}
TY  - JOUR
AU  - Yu. A. Drozd
TI  - Ad\`eles and integral representations
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 1019
EP  - 1026
VL  - 3
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a4/
LA  - en
ID  - IM2_1969_3_5_a4
ER  - 
%0 Journal Article
%A Yu. A. Drozd
%T Ad\`eles and integral representations
%J Izvestiya. Mathematics 
%D 1969
%P 1019-1026
%V 3
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a4/
%G en
%F IM2_1969_3_5_a4
Yu. A. Drozd. Ad\`eles and integral representations. Izvestiya. Mathematics , Tome 3 (1969) no. 5, pp. 1019-1026. http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a4/