Ad\`eles and integral representations
Izvestiya. Mathematics , Tome 3 (1969) no. 5, pp. 1019-1026.

Voir la notice de l'article provenant de la source Math-Net.Ru

We apply the technique of adèles to study integral representations belonging to the same genus. We study the stable structure of genera and prove that if $L$ is a representation of a semisimple $Z$-ring such that each direct summand occurs at least twice in the decomposition of $L$ over the field of rational numbers, and if $M$ and $N$ are representations from the genus of $L$, then $M\oplus L^n\simeq N\oplus L^n$ implies that $M\simeq N$. For representations of a semisimple $Z$-ring $\Lambda$ we give a bound for the number of representations in a genus; the bound depends only on the rational algebra $\widetilde\Lambda=\Lambda\otimes Q$ and on the exponent of the group $\Lambda'/\lambda$ , where $\Lambda'$ is a maximal overring of $\Lambda$.
@article{IM2_1969_3_5_a4,
     author = {Yu. A. Drozd},
     title = {Ad\`eles and integral representations},
     journal = {Izvestiya. Mathematics },
     pages = {1019--1026},
     publisher = {mathdoc},
     volume = {3},
     number = {5},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a4/}
}
TY  - JOUR
AU  - Yu. A. Drozd
TI  - Ad\`eles and integral representations
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 1019
EP  - 1026
VL  - 3
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a4/
LA  - en
ID  - IM2_1969_3_5_a4
ER  - 
%0 Journal Article
%A Yu. A. Drozd
%T Ad\`eles and integral representations
%J Izvestiya. Mathematics 
%D 1969
%P 1019-1026
%V 3
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a4/
%G en
%F IM2_1969_3_5_a4
Yu. A. Drozd. Ad\`eles and integral representations. Izvestiya. Mathematics , Tome 3 (1969) no. 5, pp. 1019-1026. http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a4/

[1] Faddeev D. K., “O polugruppe rodov v teorii tselochislennykh predstavlenii”, Izv. AN SSSR. Ser. matem., 28 (1964), 475–478 | MR | Zbl

[2] Roiter A. V., “O tselochislennykh predstavleniyakh, prinadlezhaschikh odnomu rodu”, Izv. AN SSSR. Ser. matem., 30 (1966), 1315–1324 | MR | Zbl

[3] Faddeev D. K., “Vvedenie v multiplikativnuyu teoriyu modulei tselochislennykh predstavlenii”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 80, 1965, 145–182 | MR | Zbl

[4] Bass H., “$K$-theory and stable algebra”, Inst. Hautes Études Sci. Publ. Math., 1964, no. 22, 5–60 | DOI | MR | Zbl

[5] Eichler M., “Bestimmung der Idealklassenzabl in gewissen normalen einfachen Algebren”, J. reine und angew. Math., 176 (1937), 192–202 | Zbl

[6] Eichler M., “Über die Idealklassenzahl total definiter Quaternionenalgebren”, Math. Z., 43 (1937), 102–109 | DOI | MR | Zbl

[7] Eichler M., “Über die Idealklassenzahl hyperkomplexer Systeme”, Math. Z., 43 (1938), 481–494 | DOI | MR | Zbl

[8] Eichler M., “Allgemeine Kongruenzklasseneinteilungen der ldeale einfacher Algebren über algebraischen Zahlkörpern und ihre $L$-Reihen”, J. reine und angew. Math., 179 (1938), 227–251 | Zbl

[9] Leng S., Algebraicheskie chisla, Mir, M., 1966 | MR

[10] Swan R. J., “Projective modules over group rings and maximal orders”, Ann. Math., 76 (1962), 55–61 | DOI | MR | Zbl

[11] Faddeev D. K., “Ob ekvivalentnosti sistem tselochislennykh matrits”, Izv. AN SSSR. Ser. matem., 30 (1966), 449–454 | MR | Zbl

[12] Jacobinski H., “Genera and decompositions of lattices over orders”, Acta Math., 121 (1968), 1–29 | DOI | MR | Zbl