Adèles and integral representations
Izvestiya. Mathematics, Tome 3 (1969) no. 5, pp. 1019-1026 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We apply the technique of adèles to study integral representations belonging to the same genus. We study the stable structure of genera and prove that if $L$ is a representation of a semisimple $Z$-ring such that each direct summand occurs at least twice in the decomposition of $L$ over the field of rational numbers, and if $M$ and $N$ are representations from the genus of $L$, then $M\oplus L^n\simeq N\oplus L^n$ implies that $M\simeq N$. For representations of a semisimple $Z$-ring $\Lambda$ we give a bound for the number of representations in a genus; the bound depends only on the rational algebra $\widetilde\Lambda=\Lambda\otimes Q$ and on the exponent of the group $\Lambda'/\lambda$ , where $\Lambda'$ is a maximal overring of $\Lambda$.
@article{IM2_1969_3_5_a4,
     author = {Yu. A. Drozd},
     title = {Ad\`eles and integral representations},
     journal = {Izvestiya. Mathematics},
     pages = {1019--1026},
     year = {1969},
     volume = {3},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a4/}
}
TY  - JOUR
AU  - Yu. A. Drozd
TI  - Adèles and integral representations
JO  - Izvestiya. Mathematics
PY  - 1969
SP  - 1019
EP  - 1026
VL  - 3
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a4/
LA  - en
ID  - IM2_1969_3_5_a4
ER  - 
%0 Journal Article
%A Yu. A. Drozd
%T Adèles and integral representations
%J Izvestiya. Mathematics
%D 1969
%P 1019-1026
%V 3
%N 5
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a4/
%G en
%F IM2_1969_3_5_a4
Yu. A. Drozd. Adèles and integral representations. Izvestiya. Mathematics, Tome 3 (1969) no. 5, pp. 1019-1026. http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a4/

[1] Faddeev D. K., “O polugruppe rodov v teorii tselochislennykh predstavlenii”, Izv. AN SSSR. Ser. matem., 28 (1964), 475–478 | MR | Zbl

[2] Roiter A. V., “O tselochislennykh predstavleniyakh, prinadlezhaschikh odnomu rodu”, Izv. AN SSSR. Ser. matem., 30 (1966), 1315–1324 | MR | Zbl

[3] Faddeev D. K., “Vvedenie v multiplikativnuyu teoriyu modulei tselochislennykh predstavlenii”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 80, 1965, 145–182 | MR | Zbl

[4] Bass H., “$K$-theory and stable algebra”, Inst. Hautes Études Sci. Publ. Math., 1964, no. 22, 5–60 | DOI | MR | Zbl

[5] Eichler M., “Bestimmung der Idealklassenzabl in gewissen normalen einfachen Algebren”, J. reine und angew. Math., 176 (1937), 192–202 | Zbl

[6] Eichler M., “Über die Idealklassenzahl total definiter Quaternionenalgebren”, Math. Z., 43 (1937), 102–109 | DOI | MR | Zbl

[7] Eichler M., “Über die Idealklassenzahl hyperkomplexer Systeme”, Math. Z., 43 (1938), 481–494 | DOI | MR | Zbl

[8] Eichler M., “Allgemeine Kongruenzklasseneinteilungen der ldeale einfacher Algebren über algebraischen Zahlkörpern und ihre $L$-Reihen”, J. reine und angew. Math., 179 (1938), 227–251 | Zbl

[9] Leng S., Algebraicheskie chisla, Mir, M., 1966 | MR

[10] Swan R. J., “Projective modules over group rings and maximal orders”, Ann. Math., 76 (1962), 55–61 | DOI | MR | Zbl

[11] Faddeev D. K., “Ob ekvivalentnosti sistem tselochislennykh matrits”, Izv. AN SSSR. Ser. matem., 30 (1966), 449–454 | MR | Zbl

[12] Jacobinski H., “Genera and decompositions of lattices over orders”, Acta Math., 121 (1968), 1–29 | DOI | MR | Zbl