The Castelnuovo–Enriques contraction theorem for arbitrary dimension
Izvestiya. Mathematics, Tome 3 (1969) no. 5, pp. 917-966 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present article we show that the $n$-dimensional generalization of the Castelnuovo–Enriques theorem concerning exceptional curves of the first kind on algebraic surfaces is valid in the category of minischemes over any algebraically closed field. The following result is deduced as a corollary: for every $n$-dimensional compact complex manifold $Y$ with $n$ algebraically independent meromorphic functions there exists a nonsingular minischeme $V$ over the complex field such that the complex manifold $V_\mathbf C$ canonically corresponding to $V$ coincides with $Y^*$.
@article{IM2_1969_3_5_a1,
     author = {B. G. Moishezon},
     title = {The {Castelnuovo{\textendash}Enriques} contraction theorem for arbitrary dimension},
     journal = {Izvestiya. Mathematics},
     pages = {917--966},
     year = {1969},
     volume = {3},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a1/}
}
TY  - JOUR
AU  - B. G. Moishezon
TI  - The Castelnuovo–Enriques contraction theorem for arbitrary dimension
JO  - Izvestiya. Mathematics
PY  - 1969
SP  - 917
EP  - 966
VL  - 3
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a1/
LA  - en
ID  - IM2_1969_3_5_a1
ER  - 
%0 Journal Article
%A B. G. Moishezon
%T The Castelnuovo–Enriques contraction theorem for arbitrary dimension
%J Izvestiya. Mathematics
%D 1969
%P 917-966
%V 3
%N 5
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a1/
%G en
%F IM2_1969_3_5_a1
B. G. Moishezon. The Castelnuovo–Enriques contraction theorem for arbitrary dimension. Izvestiya. Mathematics, Tome 3 (1969) no. 5, pp. 917-966. http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a1/

[1] Moishezon B. G., “Algebraicheskii analog kompaktnykh kompleksnykh prostranstv s dostatochno bolshim polem meromorfnykh funktsii”, Izv. AN SSSR. Ser. matem., 33 (1969), 174–238, 323–367, 506–548 | Zbl

[2] Artin M., Algebraic approximation of structures over complete local rings, preprint | MR

[3] Moishezon B. G., “Ob $n$-mernykh kompaktnykh kompleksnykh mnogoobraziyakh, imeyuschikh $n$ algebraicheski nezavisimykh meromorfnykh funktsii”, Izv. AN SSSR. Ser. matem., 30 (1966), 133–174, 345–386, 621–656

[4] Abhyankar S. S., Resolution of singularities of embedded algebraic surfaces, Academic Press, N. Y., 1966 | MR | Zbl

[5] Grothendieck A., Fondements de la géométrie algébrique, Extraite du Seminaire Bourbaki (1957–1962), Paris, 1962

[6] Grothendieck A., Diedonne J., “Éléments de géométrie algébrique”, Institut des Hautes Études Scientifiques Publications mathématiaques, 1961–1967

[7] Artin M., Grothendieck A., Verdier J.-L., “Cohomologie étale des schémas”, Seminaire de géometrie algébrique, Institut des Hautes Études Scientifiques, 1963–1964

[8] Nagata M., Local rings, Interscience Publishers, N. Y., London, 1962 | MR | Zbl

[9] Grauert H., “Über Modificationen und exzeptionelle analytische Mengen”, Math. Ann., 146 (1962), 331–368 | DOI | MR

[10] Serre J.-P., “Géométrie algébrique et géometrie analytique”, Ann. Inst. Fourier, 6 (1956), 1–42 | MR | Zbl