Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1969_3_3_a0, author = {Yu. I. Manin}, title = {The $p$-torsion of elliptic curves is uniformly bounded}, journal = {Izvestiya. Mathematics }, pages = {433--438}, publisher = {mathdoc}, volume = {3}, number = {3}, year = {1969}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a0/} }
Yu. I. Manin. The $p$-torsion of elliptic curves is uniformly bounded. Izvestiya. Mathematics , Tome 3 (1969) no. 3, pp. 433-438. http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a0/
[1] Borel A., Chowla S., Herz C. S., Iwasawa K., Serre J.-P.,, Seminar on complex multiplication, Seminar held at the Institute for Advanced Study (Princeton, N. J., 1957–1958), Lecture Notes in Mathematics, No 21, Springer-Verlag, Berlin, 1966 | MR | Zbl
[2] Bourbaki N., Topologie générale, chap. 3, Paris, Hermann, 1960
[3] Cassels J. W. S., “Diophantine equations with special reference et elliptic curves”, J. Lond. Math. Soc., 41 (1966), 193–291 | DOI | MR
[4] Demyanenko V. A., “Ratsionalnye tochki odnogo klassa algebraicheskikh krivykh”, Izv. AN SSSR. Ser. matem., 30 (1966), 1373–1396
[5] Demyanenko V. A., “Otsenka ostatochnogo chlena v formule Teita”, Matem. zametki, 3:3 (1968), 271–278
[6] Igusa J., “Fibre systems of Jacobian varieties III”, Amer. J. Math., 81:2 (1959), 453–476 | DOI | MR | Zbl
[7] Lang S., Diophantine Geometry, Interscience, New York, 1962 | MR
[8] Manin Yu. I., “Vysota Teita tochek na abelevom mnogoobrazii, ee varianty i prilozheniya”, Izv. AN SSSR. Ser. matem., 28 (1964), 1363–1390 | MR
[9] Mumford D., “A remark on Mordell's conjecture”, Amer. J. Math., 87:4 (1965), 1007–1016 | DOI | MR | Zbl
[10] Serre J. P., Abelian $i$-adic representations and elliptic curves, Benjamin, New York, 1968 | MR | Zbl