The $p$-torsion of elliptic curves is uniformly bounded
Izvestiya. Mathematics , Tome 3 (1969) no. 3, pp. 433-438.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the $p$-component of the torsion of elliptic curves over a numerical field is bounded.
@article{IM2_1969_3_3_a0,
     author = {Yu. I. Manin},
     title = {The $p$-torsion of elliptic curves is uniformly bounded},
     journal = {Izvestiya. Mathematics },
     pages = {433--438},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a0/}
}
TY  - JOUR
AU  - Yu. I. Manin
TI  - The $p$-torsion of elliptic curves is uniformly bounded
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 433
EP  - 438
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a0/
LA  - en
ID  - IM2_1969_3_3_a0
ER  - 
%0 Journal Article
%A Yu. I. Manin
%T The $p$-torsion of elliptic curves is uniformly bounded
%J Izvestiya. Mathematics 
%D 1969
%P 433-438
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a0/
%G en
%F IM2_1969_3_3_a0
Yu. I. Manin. The $p$-torsion of elliptic curves is uniformly bounded. Izvestiya. Mathematics , Tome 3 (1969) no. 3, pp. 433-438. http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a0/

[1] Borel A., Chowla S., Herz C. S., Iwasawa K., Serre J.-P.,, Seminar on complex multiplication, Seminar held at the Institute for Advanced Study (Princeton, N. J., 1957–1958), Lecture Notes in Mathematics, No 21, Springer-Verlag, Berlin, 1966 | MR | Zbl

[2] Bourbaki N., Topologie générale, chap. 3, Paris, Hermann, 1960

[3] Cassels J. W. S., “Diophantine equations with special reference et elliptic curves”, J. Lond. Math. Soc., 41 (1966), 193–291 | DOI | MR

[4] Demyanenko V. A., “Ratsionalnye tochki odnogo klassa algebraicheskikh krivykh”, Izv. AN SSSR. Ser. matem., 30 (1966), 1373–1396

[5] Demyanenko V. A., “Otsenka ostatochnogo chlena v formule Teita”, Matem. zametki, 3:3 (1968), 271–278

[6] Igusa J., “Fibre systems of Jacobian varieties III”, Amer. J. Math., 81:2 (1959), 453–476 | DOI | MR | Zbl

[7] Lang S., Diophantine Geometry, Interscience, New York, 1962 | MR

[8] Manin Yu. I., “Vysota Teita tochek na abelevom mnogoobrazii, ee varianty i prilozheniya”, Izv. AN SSSR. Ser. matem., 28 (1964), 1363–1390 | MR

[9] Mumford D., “A remark on Mordell's conjecture”, Amer. J. Math., 87:4 (1965), 1007–1016 | DOI | MR | Zbl

[10] Serre J. P., Abelian $i$-adic representations and elliptic curves, Benjamin, New York, 1968 | MR | Zbl