On the successive derivatives of functions in a quasianalytic class
Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 745-779
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we investigate the question of the signs in the sequence $\{(-1)^n\varphi_n(u)\}$, where $\varphi_0(u)=\varphi(u)$, $\varphi_1(u)=\varphi'(u)$, $\dots$,
$$
\varphi_{k+1}(u)=\varphi{k+1}(u)_\gamma=\biggl(\frac{\varphi_k(u)}{u^{\gamma_k-\gamma_{k-1}-1}}\biggr)', \quad k=1,2,\dots,
$$
$0=\gamma_0\gamma_1\leqslant\gamma_2\leqslant\dots\leqslant\gamma_n\leqslant\dots\to\infty$, when the real function $\varphi(t)$ belongs to a certain quasianalytic class in the sense of Carleman (according to the classification suggested by the author). A particular corollary of the result given in the paper is the correctness of Borel's hypothesis that there cannot exist a quasianalytic function $f(x)$ all of whose derivatives are positive at a given point in the domain of quasianalyticity of the function, except when the function is analytic.
@article{IM2_1968_2_4_a5,
author = {G. V. Badalyan},
title = {On the successive derivatives of functions in a quasianalytic class},
journal = {Izvestiya. Mathematics },
pages = {745--779},
publisher = {mathdoc},
volume = {2},
number = {4},
year = {1968},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a5/}
}
G. V. Badalyan. On the successive derivatives of functions in a quasianalytic class. Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 745-779. http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a5/