On the successive derivatives of functions in a quasianalytic class
Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 745-779.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the question of the signs in the sequence $\{(-1)^n\varphi_n(u)\}$, where $\varphi_0(u)=\varphi(u)$, $\varphi_1(u)=\varphi'(u)$, $\dots$, $$ \varphi_{k+1}(u)=\varphi{k+1}(u)_\gamma=\biggl(\frac{\varphi_k(u)}{u^{\gamma_k-\gamma_{k-1}-1}}\biggr)', \quad k=1,2,\dots, $$ $0=\gamma_0\gamma_1\leqslant\gamma_2\leqslant\dots\leqslant\gamma_n\leqslant\dots\to\infty$, when the real function $\varphi(t)$ belongs to a certain quasianalytic class in the sense of Carleman (according to the classification suggested by the author). A particular corollary of the result given in the paper is the correctness of Borel's hypothesis that there cannot exist a quasianalytic function $f(x)$ all of whose derivatives are positive at a given point in the domain of quasianalyticity of the function, except when the function is analytic.
@article{IM2_1968_2_4_a5,
     author = {G. V. Badalyan},
     title = {On the successive derivatives of functions in a quasianalytic class},
     journal = {Izvestiya. Mathematics },
     pages = {745--779},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a5/}
}
TY  - JOUR
AU  - G. V. Badalyan
TI  - On the successive derivatives of functions in a quasianalytic class
JO  - Izvestiya. Mathematics 
PY  - 1968
SP  - 745
EP  - 779
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a5/
LA  - en
ID  - IM2_1968_2_4_a5
ER  - 
%0 Journal Article
%A G. V. Badalyan
%T On the successive derivatives of functions in a quasianalytic class
%J Izvestiya. Mathematics 
%D 1968
%P 745-779
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a5/
%G en
%F IM2_1968_2_4_a5
G. V. Badalyan. On the successive derivatives of functions in a quasianalytic class. Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 745-779. http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a5/

[1] Carleman T., Les fonctions quasianalitiques, Gauthier–Villars, Paris, 1926 | Zbl

[2] Badalyan G. V., “Kriterii razlozhimosti funktsii v kvazistepennoi ryad i kvazianaliticheskie klassy funktsii”, Izv. AN SSSR. Ser. matem., 26 (1962), 839–864 | Zbl

[3] Badalyan G. V., “Obobschenie ryada Teilora i nekotorye voprosy teorii analiticheskikh i kvazianaliticheskikh funktsii”, Izv. AN ArmSSR, VI:5–6 (1953), 1–63 | MR

[4] Badalyan G. V., “$A_\nu$- absolyutno monotonnye funktsii”, Izv. AN ArmSSR, XIV:4 (1961), 21–35