Linear summability methods for expansions of functions in the classes $L^p_\mu$ $(1\leqslant p\leqslant\infty)$ in orthonormal systems of polynomial type
Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 709-724.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, sufficient conditions are derived under which, for all $x\in E\subset[a,b]$ (or uniformly on some set $E_1\subset[a,b]$), the following relation holds: $$ \lim_{n\to\infty}U_n(f,x,\Lambda)=f(x), $$ where the $U_n(f,x,\Lambda)$ are linear means of expansions of functions in the classes $L^p_\mu$ $(1\leqslant p\leqslant\infty)$ in orthonormal systems of polynomial type.
@article{IM2_1968_2_4_a2,
     author = {B. P. Osilenker},
     title = {Linear summability methods for expansions of functions in the classes $L^p_\mu$ $(1\leqslant p\leqslant\infty)$ in orthonormal systems of polynomial type},
     journal = {Izvestiya. Mathematics },
     pages = {709--724},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a2/}
}
TY  - JOUR
AU  - B. P. Osilenker
TI  - Linear summability methods for expansions of functions in the classes $L^p_\mu$ $(1\leqslant p\leqslant\infty)$ in orthonormal systems of polynomial type
JO  - Izvestiya. Mathematics 
PY  - 1968
SP  - 709
EP  - 724
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a2/
LA  - en
ID  - IM2_1968_2_4_a2
ER  - 
%0 Journal Article
%A B. P. Osilenker
%T Linear summability methods for expansions of functions in the classes $L^p_\mu$ $(1\leqslant p\leqslant\infty)$ in orthonormal systems of polynomial type
%J Izvestiya. Mathematics 
%D 1968
%P 709-724
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a2/
%G en
%F IM2_1968_2_4_a2
B. P. Osilenker. Linear summability methods for expansions of functions in the classes $L^p_\mu$ $(1\leqslant p\leqslant\infty)$ in orthonormal systems of polynomial type. Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 709-724. http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a2/

[1] Aleksich G., Problemy skhodimosti ortogonalnykh ryadov, IIL, M., 1963 | MR

[2] Alexits G., Kralik D., “Über Approximation im starken Sinne”, Acta Scient. Math., Szeged, 26:1–2 (1965), 93–101 | MR | Zbl

[3] Bari N. K, Trigonometricheskie ryady, GIFML, M., 1961 | MR

[4] Efimov A. V., “O lineinykh metodakh summirovaniya ryadov Fure”, Izv. AN SSSR. Ser. matem., 24 (1960), 743–756 | MR | Zbl

[5] Zigmund A., Trigonometricheskie ryady, t. I, Mir, M., 1965 | MR

[6] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, GIFML, M., 1959 | MR

[7] Karamata J., Tomic M., “Sur la sommation des séries de Fourier”, Glas Srpske Akad. Nauka Od. Prirod.-Mat. Nauka, 206:5 (1953), 89–126 | MR

[8] Lozinskii S. M., “On convergence and summability of Fourier series and interpolation processes”, Matem. sb., 14(56) (1944), 175–268 | MR

[9] Nagy B. Sz., “Méthodes de sommation des séries de Fourier. I”, Acta Scient. Math., XII (1950), 204–210 | MR

[10] Nikolskii S. M., “O lineinykh metodakh summirovaniya ryadov Fure”, Izv. AN SSSR. Ser. matem., 12 (1948), 259–278 | MR | Zbl

[11] Tandori K., “Über die Cesarosche Summietfbarkeit der orthogonalen Polynomreihen. II”, Acta Math. Acad. Sci. Hung., V:3–4 (1954), 236–253 | MR

[12] Telyakovskii S. A., “Usloviya integriruemosti trigonometricheskikh ryadov i ikh prilozhenie k izucheniyu lineinykh metodov summirovaniya ryadov Fure”, Izv. AN SSSR. Ser. matem., 28 (1964), 1209–1236 | Zbl

[13] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, t. 2, GIFML, M., 1962

[14] Fomin G. A., “O lineinykh metodakh summirovaniya ryadov Fure”, Matem. sb., 65:1 (1964), 144–152 | Zbl

[15] Fomin G. A., “O lineinykh metodakh summirovaniya ryadov Fure, podobnykh metodu Bernshteina–Rogozinskogo”, Izv. AN SSSR. Ser. matem., 31 (1967), 335–348 | Zbl

[16] Hille E., Tamarkin J. D., “On the summability of Fourier series. I”, Trans. Amer. Math. Soc., 34 (1932), 757–783 | DOI | MR | Zbl