Linear summability methods for expansions of functions in the classes $L^p_\mu$ $(1\leqslant p\leqslant\infty)$ in orthonormal systems of polynomial type
Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 709-724

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, sufficient conditions are derived under which, for all $x\in E\subset[a,b]$ (or uniformly on some set $E_1\subset[a,b]$), the following relation holds: $$ \lim_{n\to\infty}U_n(f,x,\Lambda)=f(x), $$ where the $U_n(f,x,\Lambda)$ are linear means of expansions of functions in the classes $L^p_\mu$ $(1\leqslant p\leqslant\infty)$ in orthonormal systems of polynomial type.
@article{IM2_1968_2_4_a2,
     author = {B. P. Osilenker},
     title = {Linear summability methods for expansions of functions in the classes $L^p_\mu$ $(1\leqslant p\leqslant\infty)$ in orthonormal systems of polynomial type},
     journal = {Izvestiya. Mathematics },
     pages = {709--724},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a2/}
}
TY  - JOUR
AU  - B. P. Osilenker
TI  - Linear summability methods for expansions of functions in the classes $L^p_\mu$ $(1\leqslant p\leqslant\infty)$ in orthonormal systems of polynomial type
JO  - Izvestiya. Mathematics 
PY  - 1968
SP  - 709
EP  - 724
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a2/
LA  - en
ID  - IM2_1968_2_4_a2
ER  - 
%0 Journal Article
%A B. P. Osilenker
%T Linear summability methods for expansions of functions in the classes $L^p_\mu$ $(1\leqslant p\leqslant\infty)$ in orthonormal systems of polynomial type
%J Izvestiya. Mathematics 
%D 1968
%P 709-724
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a2/
%G en
%F IM2_1968_2_4_a2
B. P. Osilenker. Linear summability methods for expansions of functions in the classes $L^p_\mu$ $(1\leqslant p\leqslant\infty)$ in orthonormal systems of polynomial type. Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 709-724. http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a2/