On the tautness of rationally contractible curves on a surface
Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 907-934

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a complex curve $A$, that is reducible in general, lie on a nonsingular complex surface $X$, and let a curve $\widetilde A$, that is isomorphic to $A$, lie on a nonsingular surface $\widetilde X$, where the intersection matrices of the components of the curves $A$ and $\widetilde A$ coincide. In this paper we shall study the question of when the isomorphism between the curves $A$ and $\widetilde A$ can be extended to a biholomorphic equivalence of their neighborhoods on the surfaces $X$and $\widetilde X$. We shall prove that this is always possible for curves obtained in the resolution of doubly and triply rational singularities. This implies the tautness (nonvariability) of doubly and triply rational singular points.
@article{IM2_1968_2_4_a12,
     author = {G. N. Tyurina},
     title = {On the tautness of rationally contractible curves on a surface},
     journal = {Izvestiya. Mathematics },
     pages = {907--934},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a12/}
}
TY  - JOUR
AU  - G. N. Tyurina
TI  - On the tautness of rationally contractible curves on a surface
JO  - Izvestiya. Mathematics 
PY  - 1968
SP  - 907
EP  - 934
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a12/
LA  - en
ID  - IM2_1968_2_4_a12
ER  - 
%0 Journal Article
%A G. N. Tyurina
%T On the tautness of rationally contractible curves on a surface
%J Izvestiya. Mathematics 
%D 1968
%P 907-934
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a12/
%G en
%F IM2_1968_2_4_a12
G. N. Tyurina. On the tautness of rationally contractible curves on a surface. Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 907-934. http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a12/