Some classes of meromorphic functions characterized by their spherical derivative
Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 687-694.

Voir la notice de l'article provenant de la source Math-Net.Ru

A certain subclass $W_1^0$ is singled out from the class of functions $W_1$ that are exceptional in the sense of Julia. A necessary and sufficient condition is proved for a function to belong to the subclass $W_1^0$, as well as two theorems about the distribution of values of the functions in the subclass $W_1^0$.
@article{IM2_1968_2_4_a0,
     author = {V. I. Gavrilov},
     title = {Some classes of meromorphic functions characterized by their spherical derivative},
     journal = {Izvestiya. Mathematics },
     pages = {687--694},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a0/}
}
TY  - JOUR
AU  - V. I. Gavrilov
TI  - Some classes of meromorphic functions characterized by their spherical derivative
JO  - Izvestiya. Mathematics 
PY  - 1968
SP  - 687
EP  - 694
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a0/
LA  - en
ID  - IM2_1968_2_4_a0
ER  - 
%0 Journal Article
%A V. I. Gavrilov
%T Some classes of meromorphic functions characterized by their spherical derivative
%J Izvestiya. Mathematics 
%D 1968
%P 687-694
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a0/
%G en
%F IM2_1968_2_4_a0
V. I. Gavrilov. Some classes of meromorphic functions characterized by their spherical derivative. Izvestiya. Mathematics , Tome 2 (1968) no. 4, pp. 687-694. http://geodesic.mathdoc.fr/item/IM2_1968_2_4_a0/

[1] Bessonoff F. P., “Sur les fonctions presque périodiques d'une variable complexe definies dans tout le plan”, C. R. Acad. Sci. Paris, 182 (1926), 1011–1013 | Zbl

[2] Favard J., “Sur les fonctions meromorphes normales du groupe des translations”, C. R. Acad. Sci. Paris, 185 (1927), 1434–1436 | Zbl

[3] Gavrilov V. I., “O povedenii meromorfnoi funktsii v okrestnosti svoei suschestvenno-osoboi tochki”, Izv. AN SSSR. Ser. matem., 30 (1966), 767–788 | MR | Zbl

[4] Julia G., Lecons sur les fonctions unif ormes à point singulier essentiel isolè, Gauthier–Villars, Paris, 1924 | Zbl

[5] Lehto O., Virtanen K. I., “On the behavior of meromorphic functions in the neighbourhood of an isolated singularity”, Ann. Acad. Sci. Fenn.(Al), 240 (1957), 1–9 | MR

[6] Marty F., “Recherches sur la répartition des valeurs d'une fonction meromorphe”, Ann. Fac. Sci. Univ. Toulouse, III:23 (1931), 183–261 | MR | Zbl

[7] Milloux H., “Le théorème de M. Picard. Suites de fonctions holomorphes. Fonctions meromorphes et fonctions entieres”, J. Math. pures et appl., 9:3 (1924), 345–401

[8] Montel P., Normalnye semeistva analiticheskikh funktsii, M., L., 1936

[9] Nevanlinna R., Odnoznachnye analiticheskie funktsii, M., L., 1941 | MR | Zbl

[10] Noshiro K., “Contributions to the thery of meromorphic functions in the unit circle”, J. Fac. Sci. Hokkaido Univ.(I), 7:3–4 (1939), 149–159 | Zbl

[11] Ostrowski A., “Über Folgen analytischer Funktionen und einige Verschärungen des Picardschen Satzes”, Math. Z., 24 (1926), 215–258 | DOI | MR

[12] Yosida K., “On a class of meromorphic functions”, Proc. Phys.- Math. Soc. Japan, 16:7 (1934), 227–235 | Zbl

[13] Anderson J. M., Clunie J., “Slowly growing meromorphic functions”, Comment. Math. Helv., 40:4 (1966), 267–280 | MR | Zbl