Representation of a tetrad
Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1305-1321
Voir la notice de l'article provenant de la source Math-Net.Ru
A complete description is given herein of finitely generated torsionless modules over the ring
$$
A=\{(a_1,a_2,a_3,a_4)\mid a_i\in A_i,i=1,\dots,4,\ a_1\varepsilon_1=a_2\varepsilon_2=a_3\varepsilon_3=a_4\varepsilon_4\},
$$
where $A_1$, $A_2$, $A_3$, $A_4$ are local Dedekind rings with the same residue field $k$, and $\varepsilon_i$ is the homomorphism of $A_i$ onto $k$.
@article{IM2_1967_1_6_a9,
author = {L. A. Nazarova},
title = {Representation of a tetrad},
journal = {Izvestiya. Mathematics },
pages = {1305--1321},
publisher = {mathdoc},
volume = {1},
number = {6},
year = {1967},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a9/}
}
L. A. Nazarova. Representation of a tetrad. Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1305-1321. http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a9/