Representation of a tetrad
Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1305-1321

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete description is given herein of finitely generated torsionless modules over the ring $$ A=\{(a_1,a_2,a_3,a_4)\mid a_i\in A_i,i=1,\dots,4,\ a_1\varepsilon_1=a_2\varepsilon_2=a_3\varepsilon_3=a_4\varepsilon_4\}, $$ where $A_1$, $A_2$, $A_3$, $A_4$ are local Dedekind rings with the same residue field $k$, and $\varepsilon_i$ is the homomorphism of $A_i$ onto $k$.
@article{IM2_1967_1_6_a9,
     author = {L. A. Nazarova},
     title = {Representation of a tetrad},
     journal = {Izvestiya. Mathematics },
     pages = {1305--1321},
     publisher = {mathdoc},
     volume = {1},
     number = {6},
     year = {1967},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a9/}
}
TY  - JOUR
AU  - L. A. Nazarova
TI  - Representation of a tetrad
JO  - Izvestiya. Mathematics 
PY  - 1967
SP  - 1305
EP  - 1321
VL  - 1
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a9/
LA  - en
ID  - IM2_1967_1_6_a9
ER  - 
%0 Journal Article
%A L. A. Nazarova
%T Representation of a tetrad
%J Izvestiya. Mathematics 
%D 1967
%P 1305-1321
%V 1
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a9/
%G en
%F IM2_1967_1_6_a9
L. A. Nazarova. Representation of a tetrad. Izvestiya. Mathematics , Tome 1 (1967) no. 6, pp. 1305-1321. http://geodesic.mathdoc.fr/item/IM2_1967_1_6_a9/